
Contents 

TouchControl Server Setup (Windows)................................................................................... 11 

TouchControl Server Setup (macOS) ...................................................................................... 17 

iOS Device Setup .................................................................................................................. 19 

Locations and Activities ......................................................................................................... 21 

Locations ..................................................................................................................................... 21 

Activities ..................................................................................................................................... 22 
Windows Server: ............................................................................................................................... 22 

Visible .......................................................................................................................................................... 22 
Not visible.................................................................................................................................................... 22 
Not included ................................................................................................................................................ 22 

Activity Configuration ........................................................................................................................ 22 
iPhone ......................................................................................................................................................... 23 
iPad ............................................................................................................................................................. 23 
Watch .......................................................................................................................................................... 23 
Scale to fit ................................................................................................................................................... 23 
Zoom to Width ............................................................................................................................................ 23 
Visible .......................................................................................................................................................... 23 
Safe Area ..................................................................................................................................................... 24 
Shadows ...................................................................................................................................................... 24 
Haptics ........................................................................................................................................................ 24 
Mouse/Keyboard......................................................................................................................................... 24 

Devices and Buttons ............................................................................................................. 26 

Devices ....................................................................................................................................... 26 

Buttons ....................................................................................................................................... 27 
Primary Buttons................................................................................................................................. 27 

IR buttons .................................................................................................................................................... 27 
Command buttons ...................................................................................................................................... 27 
AutoHotKey buttons .................................................................................................................................... 27 
EventTrigger buttons .................................................................................................................................. 27 
Global Caché buttons .................................................................................................................................. 27 
HTTP Request buttons ................................................................................................................................. 27 
iRTrans buttons ........................................................................................................................................... 27 

Composite Buttons ............................................................................................................................ 28 
Macro buttons............................................................................................................................................. 28 
Slider Buttons .............................................................................................................................................. 28 
Spinner Buttons ........................................................................................................................................... 28 
Gesture Pad buttons ................................................................................................................................... 28 

Auxiliary Buttons ............................................................................................................................... 28 
Link to Activity buttons ............................................................................................................................... 28 
Labels .......................................................................................................................................................... 28 
Web Views................................................................................................................................................... 28 



Page 2 of 199 
Back to top 

URL buttons ................................................................................................................................................. 28 
Feedback Client buttons .............................................................................................................................. 28 
Feedback Listener buttons .......................................................................................................................... 28 
Script buttons .............................................................................................................................................. 28 
Group buttons ............................................................................................................................................. 28 
Text Field buttons ........................................................................................................................................ 28 

Repeating Buttons ............................................................................................................................. 28 
Timer Buttons .................................................................................................................................... 29 
Feedback Buttons .............................................................................................................................. 29 
Adding Buttons .................................................................................................................................. 30 
Configuring Buttons........................................................................................................................... 31 
2-Stage Buttons ................................................................................................................................. 31 

IR Buttons (Windows server only) .................................................................................................. 32 
Learning IR Codes .............................................................................................................................. 32 
IR Transmit Repeat Factor ................................................................................................................. 33 
Manual IR Codes ................................................................................................................................ 33 
Pre-Script & Post-Script ..................................................................................................................... 33 

Command Buttons ....................................................................................................................... 33 
Feedback Script ................................................................................................................................. 34 
Pre-Script & Post-Script ..................................................................................................................... 34 
iOS Device Commands....................................................................................................................... 34 

Always On mode ......................................................................................................................................... 34 
Full Screen mode ......................................................................................................................................... 34 
Screen Brightness ........................................................................................................................................ 35 
Activity Locking ........................................................................................................................................... 35 
Screen Scrolling ........................................................................................................................................... 36 
Keyboard Control ........................................................................................................................................ 36 
Image Picker ................................................................................................................................................ 36 

Server-side Commands (Windows server only) ................................................................................ 37 
Server Sleep ................................................................................................................................................. 37 
Screen Grabber Control ............................................................................................................................... 37 
USB-UIRT IR Code Re-broadcast ................................................................................................................. 38 

AutoHotKey Buttons (Windows server only) ................................................................................... 38 
AutoHotKey Feedback ....................................................................................................................... 39 
Keystroke Helpers ............................................................................................................................. 40 
QuickEdit ........................................................................................................................................... 40 
Pre-Script & Post-Script ..................................................................................................................... 40 

EventTrigger Buttons .................................................................................................................... 40 
HEX Commands: ................................................................................................................................ 41 
Pre-Script & Post-Script ..................................................................................................................... 41 
EventGhost ........................................................................................................................................ 41 

Global Caché Buttons ................................................................................................................... 41 
Add a Global Caché interface in TouchControl Server ...................................................................... 42 
Add Global Caché buttons to your activities ..................................................................................... 42 



Page 3 of 199 
Back to top 

Pre-Script & Post-Script ..................................................................................................................... 46 

HTTP Request Buttons .................................................................................................................. 46 
Add HTTP Request buttons ............................................................................................................... 46 
Pre-Script & Post-Script ..................................................................................................................... 48 

iRTrans Buttons ........................................................................................................................... 48 
Add iRTrans buttons to your activities .............................................................................................. 48 

"Edit" mode ................................................................................................................................................. 49 
"Learn" mode .............................................................................................................................................. 49 
"Import" mode ............................................................................................................................................ 50 

Pre-Script & Post-Script ..................................................................................................................... 51 

Macro Buttons ............................................................................................................................. 51 
Blocking vs. non-blocking pauses ...................................................................................................... 51 
MacroMessage .................................................................................................................................. 52 
Press & Release macros .................................................................................................................... 53 
Release-only buttons ......................................................................................................................... 53 

Slider Buttons .............................................................................................................................. 53 
Action when sliding ........................................................................................................................... 54 
Action at each stop ............................................................................................................................ 54 
"Snap to touch" slider interaction ..................................................................................................... 55 
Action on release ............................................................................................................................... 55 
TouchTips .......................................................................................................................................... 55 
Script .................................................................................................................................................. 55 

Spinner Buttons ........................................................................................................................... 56 
Numeric: 0-9 ...................................................................................................................................... 56 
Numeric: Min-Max ............................................................................................................................ 56 
Buttons .............................................................................................................................................. 57 
Free Text ............................................................................................................................................ 57 
Grids .................................................................................................................................................. 58 

Gesture Pad Buttons .................................................................................................................... 58 
Hold To Repeat .................................................................................................................................. 59 
2-Stage Buttons ................................................................................................................................. 60 
Gesture Pad Mousepad (Windows server only) ............................................................................... 60 
Redirect Mouse & Keyboard Control ................................................................................................ 61 
Swipe Velocity ................................................................................................................................... 62 

Link to Activity Buttons ................................................................................................................. 62 
Dynamic Links .................................................................................................................................... 63 
Link Pre-Script.................................................................................................................................... 64 
Background Links ............................................................................................................................... 64 
Popover Links .................................................................................................................................... 65 
Custom transitions ............................................................................................................................ 65 

Labels 65 



Page 4 of 199 
Back to top 

Web Views .................................................................................................................................. 65 
Dynamic Variable Substitution .......................................................................................................... 67 
Refreshing a Web View ..................................................................................................................... 68 
Alter a Web View's Identity ............................................................................................................... 68 
Web View Script ................................................................................................................................ 69 

URL buttons ................................................................................................................................. 69 

Feedback Client Buttons ............................................................................................................... 69 

Feedback Listener Buttons ............................................................................................................ 70 

Script Buttons .............................................................................................................................. 71 

Group Buttons ............................................................................................................................. 72 
TouchMotion ..................................................................................................................................... 72 
Group Edit Mode ............................................................................................................................... 74 
Hide In Designer ................................................................................................................................ 74 
Templates .......................................................................................................................................... 74 

Text Fields ................................................................................................................................... 75 

Designing Layouts ................................................................................................................. 79 

Background Image ....................................................................................................................... 79 

Adding Buttons ............................................................................................................................ 81 
Button Packs ............................................................................................................................................... 81 

Selecting buttons ............................................................................................................................... 81 
Multi-select mode ....................................................................................................................................... 81 
Drag-select .................................................................................................................................................. 82 
Selecting group buttons .............................................................................................................................. 82 

Cloning buttons ................................................................................................................................. 82 
Copy & paste ..................................................................................................................................... 82 
Resizing buttons ................................................................................................................................ 82 

Fast resizing ................................................................................................................................................ 83 
Proportional resizing ................................................................................................................................... 83 

Replacing buttons .............................................................................................................................. 83 
Designer transparency ...................................................................................................................... 83 
Rotating buttons................................................................................................................................ 83 

Configuring Buttons ..................................................................................................................... 84 
Right-click menu ................................................................................................................................ 84 
Enabling/disabling buttons ............................................................................................................... 84 
Button Images: .................................................................................................................................. 84 

Pressed Image ............................................................................................................................................. 84 
Icons ............................................................................................................................................................ 84 
Reset size ..................................................................................................................................................... 85 
Set background color .................................................................................................................................. 85 
Disable animation ....................................................................................................................................... 85 



Page 5 of 199 
Back to top 

Button text ........................................................................................................................................ 85 
Show/hide text ............................................................................................................................................ 85 
Text size ....................................................................................................................................................... 86 
Text color..................................................................................................................................................... 86 
Text font and alignment ............................................................................................................................. 86 
TouchTips .................................................................................................................................................... 86 

Size & Location .................................................................................................................................. 87 
Delay touch........................................................................................................................................ 87 
Auto Exec ........................................................................................................................................... 87 
Layout ................................................................................................................................................ 88 

Bring to front/Send to back ........................................................................................................................ 88 
Center horizontally/Center vertically .......................................................................................................... 88 

Align ................................................................................................................................................... 88 
Stationary .......................................................................................................................................... 88 
Propagate .......................................................................................................................................... 88 
Properties .......................................................................................................................................... 88 

Design-Time Features ................................................................................................................... 89 
Snap to grid ....................................................................................................................................... 89 
Undo all changes ............................................................................................................................... 89 
Find .................................................................................................................................................... 89 
Undo button ...................................................................................................................................... 89 
Button border color ........................................................................................................................... 89 
Background variable .......................................................................................................................... 89 
Designer Hotkeys (Windows server only) ......................................................................................... 90 

Saving Layouts ............................................................................................................................. 91 

Interface Manager ................................................................................................................ 92 

Template Manager ............................................................................................................... 96 

Server Tools ......................................................................................................................... 97 

PC Remote Control (Windows server only) ..................................................................................... 97 

Listening (Windows server only) .................................................................................................... 97 

Import/Export .............................................................................................................................. 97 

Reload Configuration .................................................................................................................... 97 

Migrate Activity Buttons (Windows server only) ............................................................................. 98 

Arrange Locations & Activities (Windows server only) ..................................................................... 98 

Import Global Caché Buttons From iLearn (Windows server only) .................................................... 98 

Import Global Caché Buttons From Database ................................................................................. 99 

Find Unused Buttons (Windows server only) .................................................................................. 99 



Page 6 of 199 
Back to top 

Checking for New TouchControl Server Version (Windows server only) .......................................... 100 

TouchControl Server configuration backup/recovery (Windows server only) .................................. 100 

Backgrounds and Button Packs ............................................................................................ 101 

Background Images .................................................................................................................... 101 

Button Packs.............................................................................................................................. 102 

Scripting ............................................................................................................................ 104 

Editing Script ............................................................................................................................. 104 

Feedback Script ......................................................................................................................... 104 

The Return String ....................................................................................................................... 105 
Button text/image/icon:.................................................................................................................. 105 
Execute a button ............................................................................................................................. 106 
Additional timer button flags .......................................................................................................... 107 
Set a local variable ........................................................................................................................... 108 
Set a global variable ........................................................................................................................ 109 
Cancellation elements ..................................................................................................................... 110 

Examples ................................................................................................................................... 110 

Full Script Examples.................................................................................................................... 111 

Feedback Flags .......................................................................................................................... 112 
Feedback Slicing .............................................................................................................................. 114 

Updating activity background images via script ............................................................................ 115 

Determining device network status via script ............................................................................... 116 

Disable full-screen activity "go-back" swiping via script ................................................................. 116 

Advanced Scripting ............................................................................................................. 118 

Button pre-script and post-script................................................................................................. 118 

Custom Button Properties .......................................................................................................... 119 

Built-In Button Properties ........................................................................................................... 121 
For buttons that display text ..................................................................................................................... 121 
For Slider buttons ...................................................................................................................................... 122 
For HTTP Request buttons......................................................................................................................... 122 
For all button types that render as a button on the screen ...................................................................... 122 
For Gesture Pad buttons ........................................................................................................................... 123 
For Group buttons ..................................................................................................................................... 123 
For _deviceMotion buttons ....................................................................................................................... 123 
For _mouseMoveButton buttons .............................................................................................................. 123 
For _macroMessage buttons .................................................................................................................... 124 



Page 7 of 199 
Back to top 

For all buttons on a watch activity ........................................................................................................... 124 
For Multi-Peer buttons .............................................................................................................................. 124 

Custom script libraries ................................................................................................................ 124 

Button Script Variables ............................................................................................................... 126 

Helper functions ........................................................................................................................ 128 

Other available non-button-specific script variables and helper functions ...................................... 130 

Local/Global Variables, and State Variables via iCloud ................................................................... 133 
Local Variables ................................................................................................................................. 133 
Global Variables............................................................................................................................... 133 
State Variables and iCloud .............................................................................................................. 133 

Script Handlers .......................................................................................................................... 134 
Handle socket disconnects/re-connects with script ....................................................................... 134 
Handle iPad rotation with script ..................................................................................................... 135 

Global Watchers ........................................................................................................................ 136 

Apple Watch ...................................................................................................................... 138 

Activity configuration ................................................................................................................. 138 

Watch Button configuration........................................................................................................ 139 

Watch Haptics ........................................................................................................................... 142 

Apple Watch interface styles for TouchControl ............................................................................. 142 
List 1 ................................................................................................................................................ 142 
List 2 ................................................................................................................................................ 142 
List 3 ................................................................................................................................................ 142 
Grid .................................................................................................................................................. 142 
Style 1 .............................................................................................................................................. 142 
Style 2 .............................................................................................................................................. 142 
Style 3 .............................................................................................................................................. 143 
Style 4 .............................................................................................................................................. 143 
Style 5 .............................................................................................................................................. 143 

Miscellaneous Topics .......................................................................................................... 144 

Sizes .................................................................................................................................. 145 

Background Slideshow ........................................................................................................ 146 

Activity & Device Sharing .................................................................................................... 148 

Network PING .................................................................................................................... 149 



Page 8 of 199 
Back to top 

Connectable ....................................................................................................................... 150 

LocationManager ............................................................................................................... 151 

Device Battery Monitor ....................................................................................................... 152 

Speech Synthesis ................................................................................................................ 153 

Siri Integration ................................................................................................................... 155 

IFTTT Webhooks Integration ............................................................................................... 157 

External Mousepad ............................................................................................................. 158 

Simple Service Discovery Protocol (SSDP) ............................................................................. 160 

Integrated Global Caché IR Database ................................................................................... 162 

Device Motion Sensing........................................................................................................ 163 

Designer Device & Button Search (Windows server only) ...................................................... 165 

Device Search ............................................................................................................................ 165 

Button Search ............................................................................................................................ 165 

Grid Buttons ....................................................................................................................... 166 
Examples.......................................................................................................................................... 167 

Multi-Peer (Nearby Networking) .......................................................................................... 168 

The Multi-Peer Session ............................................................................................................... 168 

Multi-Peer Button Properties ...................................................................................................... 169 
Sender-only EventTrigger Properties: ............................................................................................. 169 

MPSendDataMode .................................................................................................................................... 169 
MPAutoAccept .......................................................................................................................................... 170 

Sender and Receiver EventTrigger Properties: ............................................................................... 170 
MPConnectScript ....................................................................................................................................... 170 
MPDisconnectScript .................................................................................................................................. 170 

Activity Locking .................................................................................................................. 171 

Interactive Web Views ........................................................................................................ 173 

What you need .......................................................................................................................... 173 



Page 9 of 199 
Back to top 

The web page .................................................................................................................................. 173 
The web server ................................................................................................................................ 174 
TouchControl & TouchControl Server ............................................................................................. 175 

USB-UIRT Broadcast (Windows server only) ......................................................................... 176 

Server Configuration Management ...................................................................................... 177 

Server Configuration Recovery ............................................................................................ 178 

Web Remotes .................................................................................................................... 179 

TouchControl Server JSON HTTP API  (Windows server only) ................................................. 181 

Examples of JSON API requests ................................................................................................... 182 

Response Format ....................................................................................................................... 182 
getlocations ..................................................................................................................................... 183 
getactivities ..................................................................................................................................... 183 
getdevices ........................................................................................................................................ 183 
getbutton ......................................................................................................................................... 184 
getbuttons ....................................................................................................................................... 184 
executebutton ................................................................................................................................. 184 

Sample Code ............................................................................................................................. 184 

Zero Config ........................................................................................................................ 186 

Screen Grabber .................................................................................................................. 187 

Viewing Grabber Output ............................................................................................................. 188 

Grabber Protection (Windows server only) .................................................................................. 189 

Troubleshooting the Grabber ...................................................................................................... 189 

EventGhost (Windows server only) ...................................................................................... 191 

EventGhost Feedback ................................................................................................................. 191 

Wake-on-LAN ..................................................................................................................... 194 

Access From the Internet .................................................................................................... 195 

Custom Slider Images ......................................................................................................... 196 

Global Caché "Smooth Continuous IR Commands" ................................................................ 197 



Page 10 of 199 
Back to top 

 



Page 11 of 199 
Back to top 

TouchControl Server Setup (Windows)  

1. Download TouchControl Server from the Download page. Either choose to run the 
installer when you download, or save the installer to your computer and then run. 
 

2. Run TouchControl Admin.  After installing TouchControl Server, you will find a 
TouchControl folder in your Start menu. Within that folder you will find links to 
TouchControl Server and the TouchControl Admin program. Before running 
TouchControl Server the first time, you must run TouchControl Admin to enable 
TouchControl to communicate on your network, and to enable event logging.  
 

IMPORTANT:  When running TouchControl Admin, even if you are logged 
on in Windows with the Administrator account, you will need to right-
click the executable and select “Run as administrator” to give it the 
needed permissions. 
 
 When you run TouchControl Admin, you will be presented with a dialog box showing 
your Windows user ID and the communications port that TouchControl will use to 
communicate.  
 

a. The Windows user ID must be the user under which TouchControl Server will be 
run on your computer. This should only be changed if you are not running 
TouchControl Admin under the same user that you will use to run TouchControl 
Server.  
 

b. The default port is 8822, and should only be changed if you know other software 
on your computer is using port 8822. You will also need to update the port 
configured in the iPhone app if changed. NOTE: If you have multiple 
TouchControl Servers, and you wish to access them from the Internet, you 
should assign each server a unique port number so that you can properly route 
traffic to each server from your network router. 
 
All activity buttons and mouse/keyboard functionality use an additional port on 
your server for communication with your iOS device. The port chosen for this 
purpose will be the next higher open port on your system - i.e. if you choose port 
8822 as the primary TouchControl port, then port 8823 will be used for all 
button clicks and mouse/keyboard control, unless that port is taken, in which 
case port 8824 will be tried, then 8825, etc., until an open port is located. 
 

c. The dialog will also show the IP address (or addresses) of your computer. Please 

http://www.touchapptech.com/#!download/c12ar


Page 12 of 199 
Back to top 

note what your IP address is, as it will be needed when running the iPhone app. If 

needed you can run the TouchControl Admin program again later to view your IP 

address. NOTE: TouchControl Admin may show multiple IP addresses for your 

computer. Make sure you select an IP address that is accessible by other devices 

on your network. 

 

d. Clicking the "Execute" button will perform the necessary administration tasks to 

enable TouchControl communication. When complete, you should be presented 

with “Success” popup message. 

 

e. PLEASE NOTE: Running TouchControl Admin requires administrator access on 
your computer to perform the necessary actions to configure the network port. 
If you are not logged on as the system administrator, you will be asked by 
Windows to allow TouchControl Admin to elevate its permissions to 
administrator level. The TouchControl Server software does not require 
administrator permissions to run under Windows. On Windows Server/Windows 
Home Server, you must be logged on as administrator when running 
TouchControl Server for it to function properly. 
 

3. Configure your firewall (if needed). TouchControl Admin, will also prompt you to allow it 
to add Windows Firewall rules to allow communication with TouchControl Server. If 
allowed, TouchControl Admin will attempt to add a rule allowing a range of ports to 
access the TouchControl Server program on your computer. The range of ports depends 
on the port you choose as the primary HTTP port (in step 2 above). Any firewalls that 
you have installed and active on your computer MUST allow communication over the 
TouchControl Server ports that were configured using TouchControl Admin in step 2 
(default is port 8822 and the next higher port number as explained above). Please 
consult your firewall configuration instructions to open the needed ports for TCP traffic. 
If TouchControl Admin is unable to create the Windows Firewall rules for any reason, 
you will be notified of the issue, and asked to manually add the Firewall rules for the 
specified ports. If needed, here are step-by-step instructions for adding a port to 
Windows firewall. 
 

4. Run TouchControl Server. The first time you run TouchControl Server, you will be asked 
if you wish to use ZeroConfig networking to allow TouchControl on your iOS device(s) to 
automatically find and configure TouchControl server.  If you answer yes, you will then 
be asked to provide a name for this server. This name is used during ZeroConfig setup in 
the TouchControl app on your device, and should be a short, "friendly" name that 
clearly describes this server (such as "Laptop", or "Home Server", etc.).  
 

a. To enable ZeroConfig networking, you must have Apple's "Bonjour for Windows" 

http://maximumpcguides.com/windows-7/open-a-port-in-windows-7s-firewall/
http://maximumpcguides.com/windows-7/open-a-port-in-windows-7s-firewall/


Page 13 of 199 
Back to top 

installed and active on your TouchControl Server. If it is not found, TouchControl 
Server will alert you and allow you to either quit TouchControl Server and install 
Bonjour, or disable ZeroConfig networking via server settings. Bonjour for 
Windows may be downloaded from the Apple web site here: 
https://support.apple.com/kb/DL999 
 

b. If you prefer not to use ZeroConfig networking, once you disable the feature in 
TouchControl Server, you will not be prompted again (until you re-enable the 
feature), and all networking updates must be made manually in TouchControl on 
your device. 
 

c. Once you enter and save the server's name, you will be presented with the 
Settings screen. All settings on this screen will contain their default values as 
follows: 

Server Settings: 

• Server Port: The communications port over which the iPhone app will 
communicate with your computer. Only change this if needed as 
described above.  

• Data Directory: The default location for TouchControl data is the 
"…\Users\<my user name>\Documents\TouchControl" directory. You 
may change this if desired.  

• Button Packs: Image files for buttons are stored in "button packs" (ZIP 
files). This list displays the button packs that you have selected to use in 
TouchControl. You may use the Add and Remove buttons to manage this 
list. Please see the Backgrounds and Button Packs topic for more 
information. 

 
Preferences: 

• Enable IRCommand2 Interface: Instructs TouchControl Server to import 
the devices and buttons configured in the IRCommand2 software and 
makes them available to add to your remote control screens. If you do 
not have IRCommand2 installed, this option will be disabled. This 
feature is available as an upgrade via an in-app purchase in the iPhone 
app. Select Settings (gear icon) from the iPhone app nav bar and tap on 
the "Upgrade" option to purchase this feature. If this option is selected, 
IRCommand2 will start automatically with TouchControl Server, if it is 
not already running.  

• Animate layout designer panel: By default, when showing or hiding the 

https://support.apple.com/kb/DL999


Page 14 of 199 
Back to top 

activity layout designer panel, TouchControl Server will grow and shrink 
as needed in an animated fashion. De-select this option to disable the 
animation.  

• Block PC sleep/hibernate: If enabled, TouchControl Server will keep 
your PC awake and available to respond to requests from your iOS 
device as long as TouchControl Server is running. NOTE: You may also 
use the wake-on-LAN feature to wake up your TouchControl Server 
system from your iOS device when needed. 

• Check for new version at startup: If enabled (default), TouchControl 
Server will perform a check at startup to see if a new version of the 
software is available from the web site. If a new version is available, 
you will be prompted to automatically navigate to the download page 
on this site via your default browser to download the new version. 
IMPORTANT: If you'd rather not automatically perform the check for a 
new version at startup (for example if you run TouchControl Server in a 
lights-out environment and do not wish to be prompted at startup in 
the event a new version is available), you should disable this option. In 
this case you should periodically perform the version check manually, 
either by using the Help > Check for new version menu option, or by 
visiting this site.  

• Enable AutoHotKey QuickEdit: This option will enable the ability to 
quickly edit all AutoHotKey button commands in a single, scrolling view 
when there are multiple AutoHotKey buttons available in a given device 
at design-time. 

• Enable ZeroConfig network setup:  If you disabled ZeroConfig during 
initial server setup, you can turn it on here, or turn it off if you wish. 

• Minimize to System Tray: By default, TouchControl Server will minimize 
to the Windows task bar when minimizing the application (standard 
Windows functionality). If this option is enabled, the application will 
minimize to the system tray instead, and will disappear from the task 
bar when minimized.  

• Protect WebRemote: This option will allow you to configure a password 
that must be used to access the WebRemote function from a browser. 

• Scale layouts in designer: By default, when an activity loads into the 
layout designer, if it is too large to fit on your PC's screen, it will scale 
the layout (background and all button images) to a size that fits on the 
currently used monitor. With excessive scaling, it can sometimes 
become difficult to acquire precisely desired positioning when the 



Page 15 of 199 
Back to top 

activity is rendered in full scale on an iPad. If this is the case, you can 
turn this setting off, and the layout designer will render at full size on 
your PC. Note that this could require that you drag the TC Server 
window around on your desktop to access all of the buttons that might 
be at the far edges of the layout, depending on the size of the layout vs. 
the size of your PC screen. 

• Start screen grabber with server: This option will automatically start the 
TouchControl Screen Grabber when the server starts, positioning the 
grabber window in the same location it was when the grabber was last 
used. 

• Toggle group edit: When editing group buttons, you can press and hold 
the “G” key to temporarily hide all buttons inside all groups for easier 
access to and manipulation of the groups themselves.  Releasing the 
“G” key re-displays the contents of the groups.  Enabling this toggle 
feature allows you to press and release the “G” key to turn on group 
edit mode, and then press and release the “G” key to turn it back off 
(effectively toggling group edit mode) rather than having to hold down 
the “G” key to edit the groups. 

• Un-dock designer window: This option presents the designer window as 
a separate window independent of the main TouchControl Server 
window, allowing you to position it wherever you like, rather than 
always being “docked” to the right side of the server window. 

• USB-UIRT broadcast: This option turns on a feature that will 
automatically re-broadcast any IR commands received by a connected 
USB-UIRT device back out onto your network via the UDP protocol, 
where TouchControl running on your iOS device(s) can listen for and 
respond to them.  See this topic for more information. 

• Use external script editor in designer:  In the Script Manager interface 
within TouchControl Server, you have the ability to specify a program 
on your computer to use to edit the external script files included in the 
Script Manager, rather than using the built-in script editing text field.  
When an external editor is specified, enabling this option will also allow 
using that same program to edit script embedded within buttons in the 
main button config interface. 

• Show location color selector:  This option enables a color selector 
button next to the location drop-down control on the server’s main 
panel.  With this enabled, the color selected for a given location will be 
used to color the location and activity buttons on the home screen in 



Page 16 of 199 
Back to top 

the TouchControl iOS app when the “Colors” theme is chosen in the 
“Theme” settings within the app.  The default color is black. 

• Designer grid size:  When the “snap to grid” feature of the designer 
panel is enabled, this option will allow you to set the size of the grid in 
pixels. 

 
Click "Save" when done. 
 

 

 
  



Page 17 of 199 
Back to top 

TouchControl Server Setup (macOS)  

1. Install TouchControl Server from the Mac App Store 
 

2. Run TouchControl Server. The first time you run TouchControl Server, you may be 
prompted to allow the app to access the local network.  If prompted, answer Yes to give 
TouchControl Server the access needed to communicate with your iOS device(s).  You 
will then be asked if you wish to use ZeroConfig networking to allow TouchControl on 
your iOS device(s) to automatically find and configure TouchControl server.  If you 
answer Yes, you will then be asked to provide a name for this server. This name is used 
during ZeroConfig setup in the TouchControl app on your device, and should be a short, 
"friendly" name that clearly describes this server (such as "Laptop", or "Home Server", 
etc.).  
 

a. If you prefer not to use ZeroConfig networking, once you disable the feature in 
TouchControl Server, you will not be prompted again (until you re-enable the 
feature), and all networking updates must be made manually in TouchControl on 
your device. 
 

b. Once you enter and save the server's name, you will be presented with the 
Settings screen. All settings on this screen will contain their default values as 
follows: 

Server Settings: 

• Server Port: The communications port over which the iPhone app will 
communicate with your computer. Only change this if another process on 
your Mac happens to be using the same port.  

• Data Directory: The directory that contains all of your TouchControl 
configuration data.  You may create multiple data directories and switch 
between them using the drop-down list. 
 
IMPORTANT: Due to the sandboxing security features of MacOS apps, 
the initial default location for TouchControl data is located within the 
app’s sandbox container. Since Apple does not permit apps to save user 
data to the sandbox container, you must change this to a location outside 
the app’s sandbox container path, such as under your Documents 
directory.  Sandboxing will also not allow TouchControl Server to create 
this directory for you, so you will need to first create an empty directory 
(e.g. named “TouchControl” or whatever name you wish) in the location 
of your choosing, and then return to TouchControl Server and use the 

https://itunes.apple.com/us/app/touchcontrol-server/id1139303674?ls=1&mt=12


Page 18 of 199 
Back to top 

“Browse” button to select that directory before you will be allowed to 
save settings and continue. 

• Hide server at startup: This option will automatically hide the server 
window immediately after startup.  The server icon will remain in the 
dock to restore the window. 

• Launch Web Remote at startup: This option will automatically launch the 
Web Remote interface in your default Web browser on your Mac 
whenever the TouchControl Server app is started. 

• Use external script editor in designer: This feature allows you to specify 
an external editor installed on your Mac to use when editing script within 
TouchControl Server, rather than using the built-in script editing text 
fields.  Enter a program installed on your Mac in the “Editor” field to 
specify the external editor to use.  For example, if you have the 
TextWrangler app installed on your Mac, simply enter “TextWrangler” in 
the “Editor” field. 

• Designer grid size: When the “snap to grid” feature of the designer panel 
is enabled, this option will allow you to set the size of the grid in pixels 
that buttons will snap to when moved. 

• Show location color selector:  This option enables a color selector button 
next to the location drop-down control on the server’s main tab.  With 
this enabled, the color selected for a given location will be used to color 
the location and activity buttons on the home screen in the TouchControl 
iOS app when the “Colors” theme is chosen in the “Theme” settings 
within the app.  The default color is black. 

 

Click "Save" when done. 
 

  



Page 19 of 199 
Back to top 

iOS Device Setup  
 
Note the minimum required iOS version to run TouchControl is iOS 9.3. 
 
Please follow these steps to install and activate TouchControl on your iOS device.  

1. Download TouchControl from the App Store and install on your device.  
 

2. Make sure you have taken a look at the Troubleshooting page to make sure your server 
is accessible from your device, especially the link to manually open ports through 
Windows Firewall. Although Windows may have asked if you would like to allow access 
to TouchControl Server, you may still need to open the ports on your server manually, 
so probably worth walking through those procedures. At a minimum you need to make 
sure that you can access the test URL at 
http://192.168.xx.xx:8822/touchcontrol/getserverinfo from another device on your 
network (preferably via Safari on your iOS device) and see the server version display.  
 

3. When you first start TouchControl on your iOS device, it will display a welcome screen 
with some general information about the app.  Tap the “Continue” button to star the 
installation and configuration process. 
 

4. If you have enabled ZeroConfig networking (discussed below) during TouchControl 
Server setup, you may see alerts that new servers were found and added to your 
configuration. After that, you will be asked if you would like to connect to a 
TouchControl Server.  
 

a. Select "Yes" if you already have a TouchControl Server established and running 
and would like to connect to it and download your configuration. If you select 
"Yes" here, proceed to step 5. 
 

b. Select "No" if you would like to put TouchControl into "Default Configuration 
Mode" on your iOS device. Default mode does NOT connect to your server, and 
includes a small number of sample activities that you can use without connecting 
to a server. Please tap the "?" icon in the navigation bar while in Default Mode to 
learn more about these sample activities, and for information on connecting to 
your server when you are ready to do so. If you select "No" here, your setup is 
complete, so do not continue to step 5. 
 

5. If you have enabled ZeroConfig networking during TouchControl Server setup (see here):  
 

http://www.touchapptech.com/#!troubleshooting/yaz3p


Page 20 of 199 
Back to top 

a. TouchControl will automatically detect any TouchControl Servers that are 
available on your network and will automatically configure the needed settings 
(IP address and port number) to connect and download your configuration. If 
TouchControl finds multiple servers, you will be presented with a dialog which 
will allow you to select the server that you would like to use for the initial setup 
on your device. 
 

b. Note: If your TouchControl Server has multiple network adapters (i.e. Ethernet 
and wireless), ZeroConfig will find both networks and configure them as multiple 
servers (with the same name) in the client configuration. This is not an error and 
will allow you to contact your server when it is connected to your network in 
either wired or wireless modes. 
 

c. Ensure that "Demo mode" under Personal Settings is disabled (not checked). 
 

d. Select a server and tap the "Save Settings" button (iPhone) or the check mark 
icon (iPad) to continue. 
 

6. If you have not enabled ZeroConfig networking during TouchControl Server setup:  
 

a. On the initial settings screen, tap "TouchControl Server" under Network Settings.  
 

b. Enter a server name - this can be any "friendly" name that you'd like to give your 
server, such as "Home Server", "Laptop", "HTPC", or anything you want to 
uniquely identify the server, as you may have more than one TouchControl 
Server in the future.  
 

c. Enter your server's IP address in the "Wi-Fi Server IP" field. The available IP 
addresses were listed at the bottom of the TouchControl Admin dialog, and 
there may have been multiple shown (e.g. wired and wireless), so you just need 
to make sure you use an IP address that is accessible by other devices on your 
network. Assuming you were able to get the test URL (above) to work, then use 
that IP address.  
 

d. In the "Server Port" field, enter the port that you used in TouchControl Admin. 
The default is 8822 and is pre-populated for you, so only change it if you 
changed it in TouchControl Admin.  
 

e. Tap "Save Settings" to return to the initial setup screen.  
 



Page 21 of 199 
Back to top 

f. Ensure that "Demo mode" under Personal Settings is disabled (not checked).  
 

g. Tap "Save Settings" (iPhone) or the check mark icon (iPad) to kick off the initial 
search for your server.  
 

7. You should see "Looking for Server..." and then "Server found! Loading new 
configuration..." on your iOS device screen. 
 

8. You should then see TouchControl loading button packs and background archives.  
 

9. You should then see the default TouchControl home screen with the included sample 
locations and activities, or any custom activities you have added on the server, displayed 
in a list of buttons. 

You can then tap "Settings" in the nav bar on the main activities screen to browse the list of 
settings that are available to you on the iOS device. 
 
Use the refresh button (circular arrow) on the right side of the app’s navigation bar to refresh 
the configuration from the server to the device any time you have made changes on the server.  
This will download the updated configuration, and any changes you’ve made to images, HTML, 
script or other files located in the server’s app directory.  If no configuration changes have been 
made, or files updated, the previously-built configuration will be downloaded to the device. 
 
Note: If you wish to force the server to rebuild the configuration, press and hold on the app’s 
refresh button for two seconds.  The server will rebuild the configuration and then send the 
configuration, as well as the background images archive (in the images/backgrounds.zip file) to 
your device.  

 
Locations and Activities 
 
Locations  
The first task you should perform in TouchControl Server is to add a location. A location 
provides a grouping for activities within TouchControl. You may add as many locations as you 
wish. Add a location - such as "Home Theater", or "Family Room", or "Bedroom", etc. using the 
File > New Location menu option. 
 
When the “Show location color selector” option is enabled in server settings, a color selector 
button will appear next to the location drop-down when a location is selected.  The color 
selected here will be used to color the location and activity buttons on the home screen in the 



Page 22 of 199 
Back to top 

TouchControl iOS app when the “Colors” theme is chosen in the “Theme” settings within the 
app.  The default color is black. 
 

Activities 

Next you must add at least one activity. Activities consist of one or more devices that are 
logically grouped together to allow you to perform a task - such as "Watch TV", or "Watch 
Movie", or "Lighting".  Add a new activity using the File > New Activity menu option.  
After you have created at least one location and one activity, select the desired location from 
the Location drop down list, and then select the desired activity from the Activity drop down 
list.  If this is the first time you have selected this unique location/activity pair, you will be asked 
if you would like to add this pairing to your configuration - click Yes 
 

Windows Server: 
Note: All activity names are available to add to any location. An activity name may also be 
added to more than one location.  The activity list is divided into three sections:  
 

Visible – those activities that exist in the currently selected location, and which will be visible in 
the app on the client device. 
 

Not visible – activities that exist in the currently selected location, but are not visible in the app 
on the client device (see the "Visible" setting below). 
 

Not included – activity names that have not been added to the currently selected location. 
Activities in the "Not included" list may be added to the currently selected location by simply 
selecting the activity from the list and following the prompts. 
When adding a new activity to your configuration, you will be prompted to optionally create 
that activity from another existing activity, effectively allowing you to use any existing activity 
as a template for new activities. If you expect to create many activities that all share the same 
basic design, you could create a "template" activity with only the common design elements and 
then use that activity as the template when creating new activities, saving potentially extensive 
design/layout effort. 
 

Mac Server: 
Within the activity popup list, activities that are visible are denoted with the “✓” symbol, and 
activities that are not visible on your device are denoted with the “✘” symbol. 

Activity Configuration: After selecting an activity, on the Windows server a "Configure –> " 
button will appear to the right of the activity name. Clicking this will display a small 
configuration panel for that activity with the below options.  On the Mac server, these options 
will automatically appear when an activity is selected.  



Page 23 of 199 
Back to top 

iPhone - designates this activity as targeted for the iPhone/iPod (default). When this 
option is selected, the layout designer panel will initially size to 320x420, 
optimized for the iPhone/iPod. Layouts designated as iPhone/iPod will 
always zoom to fill the iPad screen.  

iPad - designates this activity as targeted for the iPad. When this option is selected, 
the layout designer panel will initially size to 768x960, optimized for the iPad 
(portrait). Layouts designated as iPad will not be available in the iPhone/iPod 
app.  

Watch – designates this activity as targeted for the Apple Watch.  When this option 
is selected, the “Style” drop-down will be enabled, allowing you to select the 
layout of the activity on the watch.  See Apple Watch for more information. 

Scale to fit – this option will force the layout to automatically scale to the size of the 
device screen in all orientations (note iPhone/iPod only supports portrait 
orientation).  
 
You can also use this option make activities designed for smaller devices 
render at full screen on larger devices, or activities designed for larger 
devices render at full screen on smaller devices. Note that the "Stretch to 
full" option in the iOS app is also available, and will also provide a similar 
experience for smaller layouts on larger screens. The difference between 
"Stretch to full" and "Scale to fit" is that "Stretch to full" will only scale 
smaller activities up to larger screen sizes (as that feature was added 
specifically as a stop-gap measure for users moving from a smaller device to 
a larger device, until the activities could be re-designed), and thus 
stretches/scales all activities in that manner. "Scale to fit" on the other hand, 
can scale smaller activities to larger screens, but can also scale larger 
activities to smaller screens, and is on an activity-by-activity basis, as 
determined by you when selecting this option in the designer. 

Zoom to Width – this option forces activities to scale to the width of the device they are 
running on, and proportionately scale the height as well, which effectively 
"zooms" the activity to the size of the device (based on device width).  Your 
activity background image will always fill the entire screen, and the activity may 
scroll vertically if the zoom process results in an activity that is taller than the 
device's screen.  This is useful when using the same activities on multiple devices 
with different screen dimensions. 

Visible – if this option is de-selected, the associated activity will not show up in the 



Page 24 of 199 
Back to top 

app’s activity list, however, the activity will still exist, allowing you to link to 
the activity from other activities, while not taking up room on the main 
activity list/screen. This lets you create drill-down menus of activities, if 
desired.  
 
When creating an activity strictly to use as a template, you should mark the 
activity as not visible, so that the partial activity does not display on your 
device. (Remember to "turn on" the visible setting of your newly created 
activity if you wish, as new activities will inherit all configuration properties 
of any template used to create them.)  

Safe Area – if this option is selected, the associated activity will automatically adjust 
the top and bottom margins of your activity to layout within the "safe area" 
on full-screen iPhone and iPad devices.  This allows you to design your 
activity layouts with buttons at the top and bottom edges, but Touch control 
will automatically adjust the layout so that the top is below the front-facing 
camera assembly (the "notch") and the bottom is above the "home 
bar".  This will also help avoid the rounded corners of these devices.  The 
activity background image will continue to extend to the screen's top and 
bottom edges for a finished look.  If you'd rather take advantage of this space 
on the device screen, then leave the "Safe Area" option unselected, which is 
the default.  

Shadows – To enable button shadows for specific activities, but not for all of them, 
select the Shadows setting in the server’s activity configuration, and turn OFF the 
Button Shadows options in TouchControl settings on your device.  Leave that 
option ON in settings on your device if you wish to use button shadows for all 
buttons in all activities regardless of this setting in the server designer. 

 
Haptics – To enable button haptics for specific activities, but not for all of them, select 

the Haptics setting in the server’s activity configuration and turn OFF the Sound 
& Vibration Haptics option in TouchControl settings on your device.  Leave that 
option ON in settings on your device if you wish to use button haptics for all 
buttons in all activities regardless of this setting in the server designer. 

Mouse/Keyboard – (Windows server only) displays a "Mouse" button on the 
navigation bar on the iPhone when using this activity. Pressing the "Mouse" 
button will display the default TouchControl mouse pad and keyboard 
interface on the iPhone. This interface allows you to control the mouse 
cursor on your computer, and send keystrokes and keyboard 
shortcuts/commands to applications/windows on your computer as well. 



Page 25 of 199 
Back to top 

NOTE: If using full-screen activities on the iPhone, the Mouse button will not 
be available, as the navigation bar will be hidden. 

By default, the mousepad/keyboard will control the TouchControl Server 
where your configuration was loaded from, but it can also be configured to 
control a different TouchControl Server PC.  To point the mousepad/keybard 
to an alternate server, set the following global variable in script prior to 
opening the built-in mousepad: 

_global.mouseKeyboardServer = ‘192.168.xxx.xxx:8822’; 

Use the alternate server’s IP address and server port here (the default server 
port is 8822).  See the Scripting and Local/global variables topics for more 
information on setting global variables via script.  



Page 26 of 199 
Back to top 

Devices and Buttons  
 
Devices 

Activities are groupings of devices, so you must add one or more devices that you wish to 
control to any given activity. "Devices" in TouchControl Server are really groupings of buttons 
that logically work together in some fashion.  Devices can mirror physical equipment, like a TV, 
or HD DVR, or DVD Player, or a lighting system, or power window shades, etc., but can really be 
any set of buttons that perform any function. When controlling applications on a computer, for 
example, if you have an XM Radio Online player on your computer that you'd like to control, a 
device could be named "XM Radio", or if you would like to just group together some keyboard 
shortcuts, a device might be named “Keyboard”.  
 
Add one or more devices to your configuration by clicking the Add button under the Available 
Devices list. If you selected a location/activity pair earlier, you may then add the newly created 

device to that activity by highlighting the device in the Available Devices list and clicking the   
button to add it to the Devices In This Activity list. Only buttons from devices added to an 
activity can be used on a remote layout screen.  
 
NOTE: Windows users, if you have selected to use the IRCommand2 interface on the settings 
page, all of your IRCommand2 devices will be added automatically for you, and will be 
designated by displaying "[IRC2]" before the device name. 
 
Windows users, if you create a "device" in TouchControl Server which will mirror a real physical 
device (such as a DVD player), you may also set a default physical "host" device for that logical 
device.  Right-click on any device in the list and click "Default host..." from the popup menu and 
you will be presented with a panel allowing you to select the physical "host" device that you 
will likely use for at least the majority of buttons within that logical device.  The physical "host" 
devices are configured using the Interface Manager feature of TouchControl Server, so please 
see this topic for more information on adding physical host devices.  Once a default host is 
selected, that will be the default host displayed when configuring any buttons contained within 
that device. Please note this is only a default to help speed up the button configuration task. 
You may override this at any time for any given button during button configuration. 
 
You may also change the host defined for buttons in a device all at once by right-clicking on a 
device in the "Available devices" list and selecting "Replace host...". This will provide a list of 
currently configured hosts, and after selecting one, TouchControl will replace the host on 
buttons within the device with the newly selected host. If the device contains buttons of 
varying types, this will only replace the host on relevant buttons within the device. That is, if 
you select an HTTP Request host, for example, it will only update HTTP Request buttons in the 
device with that new host, leaving all other button types unchanged. This option is useful if you 



Page 27 of 199 
Back to top 

replace one physical device with another device, but wish to simply "re-target" the buttons 
from the old device to point to the new device. 
 
NOTE: (Windows only) To easily locate a device in the Available Devices list, simply select any 
entry in the list and start typing any part of the desired device's name. This will immediately 
filter the list to only the devices containing the typed string (which can appear at any location in 
the found devices). To filter the list to only devices starting with a given character or string, 
simply press and hold the first character you wish to search for, and the list will immediately be 
filtered to display devices whose name starts with the entered characters. Once you've found 
the device you are looking for, just press "Enter" to open the device and display its buttons, or 
press Ctrl-Enter to add the device to the currently open activity.  On Mac server, typing a device 
name will jump to that device in the list. 
 
(Mac only) If you right-click on a device in the Available Devices list, and then select the 
“Property…” option, a dialog will appear that will allow you to add a property to, or remove a 
property from, all buttons in that device at once. 

 
Buttons 
To control a device, you must add buttons which correspond to the buttons on the device's 
original remote, or in the case of PC control, that correspond to functions you'd like to perform 
on the system.  
 
* = Supported on Apple Watch 
Primary Buttons 

IR buttons* (Windows server only) will transmit an IR signal (via USB-UIRT only) to the 
device when the button is clicked.  

Command buttons* will execute programs and processes on your computer.  
AutoHotKey buttons* (Windows server only) will execute AutoHotKey scripts on your 

computer. AutoHotKey is distributed and installed with TouchControl Server (in-app 
upgrade required).  

EventTrigger buttons* will trigger events (i.e. send data) to a variety of different servers or 
software applications, such as networked A/V equipment, EventGhost, automation 
controllers, or any other device or server that can communicate via a socket over 
TCP/IP. 

Global Caché buttons* will send IR, serial, or relay (contact closure) commands to your 
Global Caché iTach or GC-100 devices (in-app upgrade required).  

HTTP Request buttons* will send HTTP requests (GET or POST) to web servers/services (for 
example the J.River Media Server or UPNP devices).  

iRTrans buttons* will send commands to your iRTrans device (in-app upgrade required). 
 



Page 28 of 199 
Back to top 

Composite Buttons  
Macro buttons* allow you to create macros consisting of multiple other button types which 

are then executed in order when the macro button is pressed, including pauses 
between buttons as needed.  

Slider Buttons let you add an iOS slider control to your layouts, and execute commands 
when sliding left, sliding right, or specify a specific command to execute at each stop 
on the slider bar.  

Spinner Buttons let you add an iOS spinner, or "picker" control, to your layouts (similar to 
the iOS date picker), and execute commands when spinning the wheel. Spinners can 
also use a table layout, or a grid layout.  

Gesture Pad buttons allow you to create buttons that respond to single- and multi-touch 
gestures (swipes, taps, and rotations). 
 

Auxiliary Buttons 
Link to Activity buttons* allow you to link from one activity screen to another.  
Labels* allow you to display text and or images on your remote layouts.  
Web Views allow you to embed a web view, or "window", within a remote layout to view 

web pages or HTML content that you supply.  
URL buttons will launch the web browser on the iOS device to view a configured web page, 

or can be used to launch other iOS apps that allow it.  
Feedback Client buttons allow TouchControl to open a connection to a specified device on 

your network and monitor that connection for feedback, and process any data 
received with custom script. 

Feedback Listener buttons allow TouchControl to open a UDP port on your device and listen 
for broadcast messages from other devices on your network, and process any 
messages received with custom script.  

Script buttons* allow TouchControl to run a block of script, without connecting to a remote 
device or sending any command. Use this button type when you simply need to run 
script locally within TouchControl on your iOS device.  

Group buttons allow dropping other buttons on top and positioning on your layouts as a 
single entity. Groups may also be tied to a template, allowing you to reuse groups in 
multiple locations, but maintain them globally.  

Text Field buttons render as a multi-line, scrolling text box allowing you to enter/interact 
with their contained text via the device keyboard, or scripting. 

 

Repeating Buttons 

If you'd like any of the primary button types to repeat the command when you hold down on 
the button on the screen, check the "Repeat" option to the right of the button type on this 
panel.  This is a per-button setting, as some buttons should not repeat their commands.  Hold-
to-repeat buttons will perform their function immediately when pressed - and then if held for 
at least 1/2 second, will start repeating the function until the button is released.  Set the repeat 



Page 29 of 199 
Back to top 

interval from .1 sec. (the default) to 600 sec. (in .01 sec. increments) as desired to adjust the 
speed of the repeating commands.  (Note the up/down control on the user interface allows 
changing the interval by .05, but you may manually enter any value with increments of .01.)  
Using the repeat interval is useful if you experience lag from your IR transmitter, AutoHotKey, 
EventGhost, etc. (i.e. commands continue to repeat after you have released the button in 
TouchControl).  Altering the interval at which the buttons repeat allows you to more closely 
match the actual duration of the command executed by each repeat of the button. Note that It 
may take some trial and error to get the button repeat to match the actual command duration. 
 

Timer Buttons 

Any of the primary button types (IR, Command, AutoHotKey, EventTrigger, Global Caché, or 
HTTP Request) may also be executed via a timer.  After selecting the "Repeat" option (above), 
you then may select the "Timer" option, which will allow you to set the button to execute 
either once after the timer expires, or each time the timer fires at a set interval.  When using 
the "Timer" feature, the repeat interval value becomes the timer's interval, and as above, can 
be set from .1 sec. to 600 sec., in .1 sec. increments.  Timer buttons are started by tapping the 
button on the iOS device screen, or by executing the button using the "[#]" script return string 
element (see Scripting for more info).  Timer buttons can be stopped by 1) tapping a currently 
running timer button again, 2) by once again executing the button from script using "[#]", or 3) 
by exiting the activity containing the timer button. Linking forward to another activity will not 
terminate timer buttons, as the activity containing the timer still exists in that instance.  Timer 
buttons may also be set as the AutoExec On Load button for an activity, to ensure the timer 
starts as soon as the activity loads, if desired.  
 
Feedback Buttons 

Command, AutoHotKey, EventTrigger, Global Caché, and HTTP Request buttons also allow you 
to specify if you’d like to receive feedback from those button executions.  Selecting this option 
will force TouchControl on your device to wait after each button click for feedback from the 
device or program that you are controlling.   Make sure that the resulting action from the 
button click actually returns feedback from the action, or TouchControl will timeout waiting for 
the feedback to arrive. 

IMPORTANT: If you are controlling a device or server that always returns feedback from 
each button click (such as a Denon receiver, for example), you should always select the 
"Feedback" option for any buttons used with that device/server.  Using feedback 
buttons ensures that the feedback from the device is always emptied from the queue 
after each button click and does not accumulate.  If you are not interested in processing 
the feedback from any button, just don't provide feedback script to process it, and it will 
effectively be ignored.  
 
Alternately, when controlling EventGhost, you specify which button clicks should return 



Page 30 of 199 
Back to top 

feedback using the Feedback action within the TouchControl EventGhost plugin.  In that 
case you should only use feedback buttons for commands that you have defined to 
return feedback, because looking for feedback when none is generated will cause the 
app to pause and timeout while it waits for feedback, drastically degrading 
performance. 

Adding Buttons 

To add a button to your configuration, highlight a device in the "Available Devices" list and click 
the "Add Button" button.  
On the "New Button" panel, first supply a name for the new button.  The name given a button 
will also be used by default for the text/caption for the button on your remote layout screen.  
 
Next, select the button type from the many available types.  Primary Buttons are the main 
buttons that do the work in TouchControl.  These buttons are configured (later) with the actual 
commands that will be sent to the remote devices.  Composite Buttons are actually made up of 
one or more "primary" buttons, via various configuration methods.  So, commands that you 
wish to send using any of the composite button types must first be configured via a primary 
button.  Auxiliary Buttons allow you to perform various "auxiliary" tasks on your remote 
layouts, including running script, displaying text as a label, linking to other activities, launching 
URLs or other iOS apps, or displaying web pages within a window on your remote screen.  
You may also specify whether to automatically display the built-in TouchControl mouse pad or 
keyboard screen after you execute a given button command.  This is simply a time saver 
primarily for HTPC users, in case there are commands that you execute that you know you will 
always want to navigate the cursor or send text immediately following the command. 
  
By default, a button will display its name as the button's text on your device's screen (for those 
button types that support text labels). This may prove a challenge if you would like to embed 
any type of formatting in the button's text on the screen, such as line feeds, etc. (as button 
names are also used to reference buttons in scripting).  Therefore, you can set alternate text for 
any button by selecting one of the "Alternate Button Text" options on the new/edit button 
panel.  The "Text" option allows you to enter simple text with embedded escape characters 
(such as \n for line feed, etc.).  The "HTML" option allows you to enter any desired HTML that 
you'd like to display on the button, including tables, divs, inline styles, etc.  The "HTML" option 
gives you nearly complete control over the button's text content, including loading images to 
display on top of the button's background image.  Even the button images that you use as 
normal button backgrounds can be loaded via HTML onto any button to mix text and images in 
unique and interesting ways.  To load one of your button pack images onto a button via HTML, 
simple use the <img> tag as follows:  
 
<img src='images/buttonpackname/imagefilename.png'/>  
 



Page 31 of 199 
Back to top 

(note the buttonpackname and imagefilename are case sensitive). 
 
TouchControl will load this image directly from TouchControl's on-device cache, so no external 
(off-device) loading is necessary (although that's possible too by specifying an external location 
for the image source).  
 

When setting alternate text for a button, you may also specify one of the button's defined 
properties.  To specify a property value as alternate text, enter _property.myPropertyName in 
the alternate text field. When the button renders on the iOS device screen, the specified 
property value will display as the button's text or TouchTip. This allows you to have the same 
button displayed multiple times on the same layout with different text. 
 

Configuring Buttons  

After you've added one or more buttons, highlight a button and click the Set Data button 
(Windows) or Configure button (Mac) - or double-click the button in the list, to configure the 
button's functionality. You may add as many buttons as you wish before defining any of their 
functions using Set Data. 
 
If you have selected to use the IRCommand2 interface (Windows only) on the settings page, all 
of your IRCommand2 buttons will be available automatically for you when you select an 
IRCommnand2 device in the device list, and will display "IRC2" as the button type. The function 
performed by IRCommand2 buttons is defined within the IRCommand2 interface. 
On Windows server, right-clicking on a button in the buttons list will allow you to edit the given 
button, which will allow you to re-define the core functionality of the button (e.g. change from 
an IR button to a command button, set repeat, timer, and/or feedback options, etc.).  On Mac 
server, the button configuration is always available via the “Button Settings” tab at the top of 
the button config window for any button. The right-click menu will also give you the option to 
duplicate (copy) the selected button, and specify which device the new (copied) button should 
reside in, and provide a new button name, if desired. 
 
NOTE: To easily locate buttons from any device in your configuration, simply select any entry in 
the "Available Devices" or the "Buttons for selected device" lists and either right-click and select 
"Find Button...", or just press Ctrl+F. This will open the Find button panel. Simply begin typing 
any part of a button name in the "Button name" field, and the result list will automatically filter 
to any buttons whose name contains the entered string. Highlighting and selecting a button in 
the results list (use arrow buttons or click with mouse to highlight, then click "OK" or double-
click or press enter to select) will automatically select that button's device in the devices list, 
and automatically display and select the button in the buttons list. 
 

2-Stage Buttons 

An additional method of displaying buttons in your layouts is by creating a "2-stage" button. 2-



Page 32 of 199 
Back to top 

stage buttons allow you to place a button on a layout, and when that button is tapped, a “real” 
button appears over your layout which you can tap to execute the intended command. This 
could be useful if you have a layout with many buttons on an iPhone or iPod, and don’t have 
room for all of the buttons’ full text. A small image or hot-spot could be used for each button, 
and then when tapped, a “clickable” button would appear with the full button text. 2-stage 
buttons also display a dismiss icon (red “X”) that allows you to dismiss the button without 
actually executing it. This could also be useful for a button that has a long running macro (e.g. 
starting up your theater, adjusting lights, opening/closing blinds, etc.), and you sometimes 
accidentally tap it at the wrong time. Using a 2-stage button, you would in essence have the 
chance to confirm or dismiss the actual execution of the button before possibly executing a 
destructive command or macro. 
 
2-stage buttons are implemented via the gesture pad, so add a gesture pad button to any 
layout, and when configuring the pad, select the “Tap” gesture, and then select the “2-Stage” 
option. Select the “action” for the tap gesture just as you would for any other gesture pad. The 
button selected as the tap gesture “action” will be the button used for the 2-stage command.  
 
Note: If you have not purchased the IRCommand2, AutoHotKey, Global Caché or iRTrans 
upgrades in the iOS app, you can add those buttons in TouchControl Server, but they will not be 
accessible on your remote screens on the device. You can, however, add, configure, and test all 
of these buttons from within TouchControl Server to ensure they work properly before 
purchasing the upgrades on the device. 
 
Now you're ready to start Designing Layouts. 
 

IR Buttons (Windows server only) 
 
Learning IR Codes (for use with USB-UIRT only) 
Once you have added one or more IR buttons, you are ready to teach TouchControl the IR 
signals (codes) that it will transmit to your equipment.  Make sure you have the original remote 
available for the device that you'll be controlling, then highlight a button in the "Buttons for 
selected device" list and click the Set Data button, which will display the IR code learning 
screen.  Aim the device remote's IR transmitter at the USB-UIRT device's IR receiver, click the 
Start Learning button on the TouchControl screen, and press and hold the corresponding 
button on the remote until you see the IR code displayed in the window.  If the learning task 
fails, a message will alert you to this, and you can repeat these steps to try again.  Until you find 
the right orientation and distance for learning the signals, it may take more than one try before 
successfully learning the codes.  After the code has been successfully learned, click the Save 
button to save the code to the TouchControl configuration.  If you want to immediately test the 
code, point the USB-UIRT at your equipment, and press the Test button.  The device should 



Page 33 of 199 
Back to top 

perform the desired function.  If it doesn't, you may need to re-learn the code, as it may not 
have detected the entire code stream. 
 
If you have selected to use the IRCommand2 interface on the settings page, your IRCommand2 
buttons will automatically use the IR codes (or any other functions) defined in IRCommnand2, 
so no re-learning needed! 
 
IR Transmit Repeat Factor 
The IR transmit repeat factor controls the transmission of the IR signal from the USB-UIRT 
device.  Some devices require multiple IR signal bursts to ensure the signal 
is received successfully, while other devices require that the IR signal is transmitted only once 
for the command to function as expected.  Allowing the repeat factor to be set for each 
button gives you ultimate control over how the signal is transmitted.  For example, if you wish 
for a signal to be transmitted multiple times - to increase/decrease volume more than 
one notch at a time, or to move to the top or bottom of a list of menu items, for example - you 
can increase the repeat factor to accomplish this.  The default factor is 2, which 
should allow the majority of IR signals to function as expected.  
 
Manual IR Codes (for use with USB-UIRT only) 
As an alternative to learning codes from an existing remote, you may also manually insert IR 
codes by pasting them directly into the code learning window in TouchControl.  The codes used 
by TouchControl are in the Pronto CCF format, which can be found in various places - one of the 
most popular being http://www.remotecentral.com/, which hosts thousands of remote codes 
for hundreds of different devices.  Visit the "Files" section of that site, find the desired code for 
your device, and copy and paste it into the TouchControl window.  This can be very handy if you 
have, for example, lost the original remote for a device. 
 
Pre-Script & Post-Script 
Enter any desired pre- or post-script for the button.  See the Advanced Scripting topic for more 
information.     
 

Command Buttons 
 
Command buttons allow you to execute commands, processes, executable, batch files, etc., on 
your TouchControl Server PC, directly from your iOS device.  To set the command to be 
executed by a command button, select the button in the list and click the "Set Data" button, 
which will open a panel that allows you to enter a PC command or program to be executed 
when clicking on that button on your remote layout.  In addition to entering commands 
manually via the keyboard, you may also drag and drop files, shortcuts, URLs, text, etc. on to 
the command text box to automatically configure the button to launch that item.  Use the 

http://www.remotecentral.com/


Page 34 of 199 
Back to top 

additional command arguments text box to enter any additional arguments that you'd like to 
pass to the command or program that is defined in the command box.  
 
Feedback Script 
If you enable the "Feedback" option for a command button, you can add JavaScript to the 
button configuration that will run whenever feedback is received from the command executed 
by this button.  Note that feedback for Command buttons is only provided when running an 
executable (.exe) or a batch file (.bat) on your TouchControl Server PC.  See the Scripting topic 
for more information. 
 
Pre-Script & Post-Script 
Enter any desired pre- or post-script for the button. See the Advanced Scripting topic for more 
information.  
 
iOS Device Commands 
You can use a command button to perform various functions to control the iOS devices 
themselves.  For example, you can adjust the device's back light, enable or disable "Always On" 
mode (device sleep), etc.   
 

Always On mode 
These commands enable or disable the device's built-in sleep timer.  This also 
directly updates the "Always On" setting within TouchControl's app settings.  Use 
the following commands in the "Command" field: 
 
{enable sleep}    - disable "Always On" mode 
{disable sleep}    - enable "Always On" mode 
{toggle sleep}     - toggle "Always On" mode 
 
Each of these commands will also update the variable _sleep to the value 
"enabled" or "disabled", which can be accessed/used within any pre-, feedback, 
or post-script to determine the current sleep mode. 
 

Full Screen mode 
These commands allow you to put an individual activity into or out of full screen 
mode, independent of the "Full Screen Activities" option in TouchControl app 
settings: 
 
{fullscreen:on} 
{fullscreen:off} 
 



Page 35 of 199 
Back to top 

Each of these commands will also update the variable _sleep to the value 
"enabled" or "disabled", which can be accessed/used within any pre-, feedback, 
or post-script to determine the current sleep mode. 
 

Screen Brightness 
These commands adjust the device's hardware back light.  When the back light is 
fully dimmed using this feature, a single tap or swipe on the screen must first be 
performed to bring the device out of "full dim" mode and enable normal screen 
touches within the app.  Use the following commands in the "Command" field: 
 
{screen full bright}      - set brightness to 100% 
{screen full dim}         - set brightness to 0%, and enable tap/swipe 

restore 
{screen set bright:nn}   - set brightness to specified percent (e.g. {screen 

set bright:80}) 
{screen set bright+nn}   - increase brightness by specified percent 
{screen set bright-nn}   - decrease brightness by specified percent 
 
Each of these commands will also update the variable _brightness to the current 
screen brightness after the command has executed, which can be accessed/used 
within any pre-, feedback, or post-script to determine the current brightness 
level. 
 
NOTE: This brightness feature is intended to be an app-specific setting.  
However, there is currently a bug in iOS that will prevent the device from 
returning to the global iOS brightness setting when exiting the app using the 
device's home button.  Therefore, if you find that the screen brightness at the 
iOS home screen is incorrect, you can simply press the sleep (top) hardware 
button on the device, and then wake the device to restore the correct iOS 
brightness setting. 
 

Activity Locking 
These commands allow you to "lock" an activity optionally requiring a password 
to "unlock" the activity, allowing navigation away from the activity screen.  Use 
the following commands in the "Command" field: 
 
{screen lock:on:password} - lock the activity, requiring the user to enter the 

supplied password to unlock 
{screen lock:on}         - lock the activity, requiring you to 

programmatically unlock the activity 
{screen lock:off}  - programmatically unlock the activity 



Page 36 of 199 
Back to top 

 
Please see this page for more information on activity locking.  
 

Screen Scrolling 
You can also scroll the screen of a scrollable activity directly from Command 
buttons on your iOS remote layouts. Simply enter the following in the command 
field when configuring your buttons: 
 
{scroll page right}  - scroll the width of the device's screen to the right 
{scroll page left}  - scroll the width of the device's screen to the left 
{scroll page up}  - scroll the height of the device's screen up 
{scroll page down}  - scroll the height of the device's screen down 
{scroll page right+up}  - scroll to the right and up one page 
{scroll page right+down} - scroll to the right and down one page 
{scroll page left+up}  - scroll to the left and up one page 
{scroll page left+down} - scroll to the left and down one page 
{scroll top}   - scroll to the top edge of the layout 
{scroll bottom}  - scroll to the bottom edge of the layout 
{scroll left}   - scroll to the left edge of the layout 
{scroll right}   - scroll to the right edge of the layout 
{scroll to:(+/-)x,(+/-)y} - *where x,y = upper-left screen coordinates you 

want to scroll to 
 
* If the x and/or y coordinates are preceded by "+" or "-", the screen will scroll by 
the number of pixels relative to the current location.  Otherwise the coordinates 
are absolute pixel values. 
 

Keyboard Control 
The following special device commands can be used with text field buttons to 
manipulate the iOS keyboard:  
 
{keyboard show:myTextField} - shows the keyboard, placing cursor focus 

in the specified text field 
{keyboard hide}   - hides the keyboard 
 

Image Picker 
This command displays the iOS photo library image selection screen, allowing 
you to select an image to use within your own TouchControl activity at runtime: 
 
{imagepicker} 
 



Page 37 of 199 
Back to top 

Enable the command button for Feedback and your feedback script will receive 
the path to the selected image in the _feedback variable. For example, to set a 
button's background image to the selected image, use the following feedback 
script within the command button: 
 
_setImage('myImageButton',_feedback); 
 
Note that the selected image is copied from your device photo library and stored 
within the TouchControl app data store on your device.  To access that same 
image at a later time, store the location contained in the _feedback variable to 
iCloud state using the _state variable scripting feature. 
 

Server-side Commands (Windows server only) 
You may also use a command button to perform various functions to control various features of 
TouchControl Server.   
 

Server Sleep 
These commands enable or disable TouchControl Server's ability to block the PC 
from sleeping.  Use the following commands in the "Command" field: 
 
{server sleep:disable}  - block the PC from sleeping     
{server sleep:enable}   - allow the PC to sleep normally 
{server sleep:reset}     - reset to the current TC Server "Block PC 

sleep/hibernate" setting 
 
Note that these commands will not change the TouchControl Server "Block PC 
sleep/hibernate" setting, thus allowing you to temporarily override the server 
setting.  Either use the :reset command above, or restart TC Server to re-sync the 
PC's sleep setting with the TouchControl Server setting value. 
 

Screen Grabber Control 
You may start, stop, restart, hide, show, move, and re-size the screen grabber 
directly from Command buttons on your iOS remote layouts. Simply enter the 
following in the command field when configuring your buttons: 
 
{grabber start}                              - start the grabber 
{grabber stop}                               - stop the grabber 
{grabber restart}                            - restart the grabber 
{grabber hide}                               - hide the grabber 
{grabber show}                               - show/flash the grabber 
{grabber pointer:on}                              - turn Capture Mouse Pointer on 



Page 38 of 199 
Back to top 

{grabber pointer:off}                              - turn Capture Mouse Pointer off 
{grabber move:(+/-)l,(+/-)t}                 - move the grabber 
{grabber move:(+/-)l,(+/-)t,(+/-)w,(+/-)h}  - move/re-size the grabber  
 
When moving the grabber, "l" and "t" are integers indicating the left and top of 
the grabber window in screen coordinates, and "w" and "h" are integers 
indicating the width and height of the grabber window.  If any of these are 
preceded by "+" or "-", it will move or re-size the grabber window by the number 
of pixels relative to the current position or size.  As an examples, if you desire to 
only alter the size of the grabber, simply enter: 
 
{grabber move:+0,+0,100,100} 
 
...or to only alter the left position... 
 
{grabber move:+25,+0}  
 

USB-UIRT IR Code Re-broadcast 
If you are using the "USB-UIRT Broadcast" feature to broadcast IR codes received 
by the USB-UIRT out to iOS devices on your network running TouchControl, the 
following command will force TouchControl Server to re-broadcast all unique IR 
codes received since the server was last started, in the order they were last 
received by the USB-UIRT: 
 
{rebroadcast ir} 
 
And the following command will clear the re-broadcast queue:  
 
{rebroadcast clear}  
 
Look for more special device commands in future releases of TouchControl. 

 

AutoHotKey Buttons (Windows server only) 
 

Note: AutoHotKey integration is available as an upgrade via an in-app purchase within 
the TouchControl app on your device.  If you have not purchased that upgrade (found 
under "Settings"), any AutoHotKey buttons you add to your remote layouts will not be 
accessible on the device.  Purchasing the upgrade will enable any existing and future 
AHK buttons to appear.  
 



Page 39 of 199 
Back to top 

AutoHotKey (AHK) buttons allow you to enter AHK scripts directly into TouchControl, and those 
scripts will be executed when you tap on AHK buttons on your remote screens on the phone.  
The AutoHotKey executable is distributed with TouchControl server, so you don't need to install 
it separately (but it is fine if you already have it installed, or wish to also install it yourself for 
other purposes).  After adding an "AutoHotKey" type button, clicking the "Set Data" button for 
it will open a panel that allows you to enter the AHK script to be executed.  You will also find a 
"Record" button, which will launch the AutoScriptWriter executable which comes with 
AutoHotKey to record your keystrokes and mouse interaction.  Follow the instructions in the 
prompts when using this feature.  You may also test your AHK scripts immediately while editing 
them.  Simply click the "Test" button at any time to test the script as it is displayed in the input 
panel - no need to save the script first. 
 
AutoHotKey Feedback 
AutoHotKey buttons can be configured to receive feedback from your AutoHotKey scripts.  
When you create an AutoHotKey button in TouchControl Server, you are given the option to 
check the "Feedback" box, which tells the device app that after it executes the AutoHotKey 
script, it should wait to receive some text back from AutoHotKey before continuing.  That text 
can then be used to replace the caption on any of your activity buttons or labels, replace the 
image and/or icon associated with any button or label on your layout, execute other buttons on 
a layout, etc.  To configure and use AutoHotKey feedback: 

1. Create an AutoHotKey button and select the Feedback option 
2. Use the "Set Data" button to enter the AHK script that will be executed by the button 
3. At the end of the script add the following command: 

return, "buttonName^buttonText" 
Where "buttonName" is the name of the label or button that will receive the feedback 
value, and "buttonText" is the string value that will be placed on the button or label. 
Either of those values may be static text, or may be dynamically generated from your 
AutoHotKey script.  Please consult the AutoHotKey documentation for information on 
generating string values. 

Please note that when you designate a button as an AutoHotKey feedback button, when the 
button is pressed TouchControl will wait up to 10 seconds to receive the feedback.  If no 
feedback is received within that time, TouchControl will not populate your feedback label or 
button caption, and will simply continue normally.  So, it is important that you remember to 
add the return statement to the end of the AutoHotKey script executed by any AutoHotKey 
feedback button. 
 



Page 40 of 199 
Back to top 

If you wish to process the feedback from this button using custom script, select the "Feedback 
Script" option and enter/paste your JavaScript in the provided text box.  See the Scripting topic 
for more information regarding feedback and feedback scripting. 
 
Keystroke Helpers 
To help speed the manual creation of AutoHotKey scripts, a "Keystroke Helpers" dialog is 
available to quickly enter common AutoHotKey keystroke macros.  Just click the "Keystroke 
helpers" checkbox to display the dialog.  The keystroke helpers dialog contains three tabbed 
pages of keystroke macros that you can enter into your script with a single click of a button.  
The "Ctrl/Alt/Shift" page includes all of the different Ctrl, Alt and Shift variants (such as "{Ctrl 
Up}", "{LShift Down}", etc.  The "Win Keys" page contains helpers for many of the standard 
Windows keys, and the "FKeys" page contains helpers for {F1} through {F24}. 
To hide the "Keystroke Helpers" dialog, simple un-check the "Keystroke helpers" checkbox, or 
just Save or Cancel your script. 
 
QuickEdit 
When you select a device that has one or more AutoHotKey buttons defined, a "QuickEdit" 
button will display just above the list of buttons for that device which will open a "batch" 
editing window, giving you quick access to the scripts for all AutoHotKey buttons in that device. 
This can be helpful when you have many AutoHotKey buttons that perform similar actions and 
you'd like to copy/paste scripts from one button to another without opening each button 
configuration separately. 
 
Pre-Script & Post-Script 
Enter any desired pre- or post-script for the button. See this page for more information. 
 

EventTrigger Buttons 
 

To use an EventTrigger button, you must first add a remote “EventTrigger” server or device 
using the Interface Manager option within Settings in TouchControl Server.  EventTrigger (ET) 
buttons allow you to send data to “event servers” such as EventGhost, or TCP/IP-enabled 
devices such as A/V receivers, etc., directly from TouchControl on your device.  Then when 
configuring the EventTrigger button, select the desired server or device from the drop-down 
list. 
 
To configure an EventTrigger button, simply enter the text string that you want to send to the 
device or server into the EventTrigger Command field in the button configuration.  Also set the 
“Command Terminator” selection to whatever is required for the server or device that you will 
be controlling.  For example, the TouchControl EventGhost plugin requires that all event strings 
be terminated with a line feed, and Denon AVR receivers require all command strings be 



Page 41 of 199 
Back to top 

terminated with a carriage return.  Please consult your server/device documentation to 
determine the correct termination character to use, if any. 
EventTrigger buttons can be used to send wake-on-LAN messages to your network devices.  
Look here to find out how! 
 
HEX Commands:  
EventTrigger buttons can also send raw HEX commands to devices.  To send a HEX command, 
enter the following in the EventTrigger command textbox when configuring a button: 
 
0x:64A783FD546D3265 
 
...where "0x:" is a required prefix, and the remaining data is your HEX command, with no spaces 
or other special characters.  HEX commands must contain an even number of characters (not 
including the "0x:" prefix).  
 
You may also send mixed ASCII and HEX commands.  To send a mixed command, enter the 
following in the EventTrigger command textbox when configuring a button: 
 
MYCOMMAND\x02\x5F\x00\x2F\x41\x0D 
 
...where "MYCOMMAND" is the ASCII portion of the command, and each HEX digit is prefixed 
with "\x" to denote it's HEXed-ness.  ASCII characters may reside at anywhere within the 
command and may exist in multiple locations in the command. 
Note that when entering HEX or mixed commands, the "Command Terminator" character is 
ignored, and any specific terminator required must be included within the command itself. 
If you wish to include the literal string "\x" in your command data without converting it to HEX, 
enter the string as "\\x".  If you wish to include both "\x" (HEX) data and the "\\x" literal string 
within the same command, precede the entire command with the "0x:" prefix as shown above. 
 
Pre-Script & Post-Script  
Enter any desired pre- or post-script for the button. See this page for more information. 
 
EventGhost 
You can easily control EventGhost using the EventTrigger interface within TouchControl.  Please 
see the EventGhost topic for more information. 
 

Global Caché Buttons  
 

Note: Global Caché (GC) integration is available as an upgrade via an in-app purchase 
within the TouchControl app on your device.  If you haven't purchased that upgrade 
(found under "Settings"), any GC buttons you add to your remote layouts will not be 



Page 42 of 199 
Back to top 

accessible on the device.  Purchasing the upgrade will enable any existing and future GC 
buttons to appear.  

 
Note: TouchControl is designed to work with GC-100 devices with firmware versions of 
3.0 or greater.  If your GC-100 device's firmware version is prior to 3.0 and you 
encounter problems when attempting to communicate with TouchControl you may 
contact Global Caché support for information on how to upgrade your GC-100 device. 

 
The Global Caché interface in TouchControl allows you to control Global Caché (GC) iTach & GC-
100 devices directly from your iOS device, without passing through your TouchControl Server.  
This interface is available within TouchControl on your iOS device as an in-app upgrade, but like 
all other TouchControl functionality, can be fully configured and tested in TouchControl Server 
before purchasing the device upgrade. 
 

Add a Global Caché interface in TouchControl Server 
1. Select Tools -> Settings from the TouchControl Server menu. 

2. Click the Interface Manager button.  The "Interface Hosts" panel will open. 

3. Click "Add New", and enter the required information for your Global Caché device(s) 
and click "Save" and then click "Save" again. 

4. Finally click “Save” again to save and close the TouchControl Server settings. 

  

Add Global Caché buttons to your activities 
1. On the main TouchControl Server panel, select a TouchControl device (or create a new 

device and select it in the device list), and click “Add Button”.  

2. On the “New Button” panel, give the button a name, select the "Global Caché" button 
type, and optionally set the button as repeating, set the repeat interval, set it as a timer 
button, and/or enable for feedback as desired.  

3. Click “Add” to create the button. (Note that when adding Global Caché buttons, all will 
display as type "GC" in the button list, whether your device is an iTach or GC-100, as it 
may be possible to share GC buttons between those devices in some situations.  

4. Once the new button is added, highlight the new button in the Buttons list and click "Set 
Data". The Global Caché Command panel will display.  

5. The default GC device (entered in Interface Manager above) will initially display for each 
GC button. To set the desired device, simply choose it from the Device Name drop down 
list.  If the device you want to control with this button is not listed, click the "Manage" 
button and add the needed GC device, and then select it when you are returned to this 
panel. 



Page 43 of 199 
Back to top 

6. Select the "IR", "Serial", or "Relay" radio button, depending on which type of command 
you will be sending to the GC device. 

 

GC commands may be added to the button using the following methods: 

• If you are entering a Serial command, simply enter or paste it into the empty textbox.  
Also set the "Command Terminator" to the required terminator for the serial device you 
will be controlling, or set the terminator to "Nothing" if no terminator is required. 

• If you are using a GC IR command that you have obtained from some other source, click 
the "Edit" button and enter or paste it directly into the empty textbox.  The module, 
connector, repeat and frequency settings will be automatically detected from the 
command you enter/paste.  Change them as needed/required (please consult the 
Global Caché documentation at http://www.globalcache.com/downloads for more 
information on the required settings for your device). 

• You may also learn GC IR commands through an iTach device directly in TouchControl 
Server: 

1. Click "Learn" to open the IR learn panel. 
2. Set the module, connector, repeat, and separation settings as desired (consult 

your GC device documentation for the correct values for these settings). 
3. Select "Auto-trim" to force TouchControl Server to automatically trim redundant 

data from the resulting learned IR command. 
4. Click the "Start" button. 
5. Point your device’s original remote at the IR receiver on the iTach device and 

press the desired remote button to learn. If the command is not detected within 
15 seconds, the learning process will timeout and you will need to try again. 

6. When the command is learned, the IR data window will populate with the GC IR 
command data, and the module, connector, repeat and frequency settings will 
be detected and populated (it may take more than one attempt to successfully 
learn a given command). 

7. Click the "Save" button to generate and display the full GC IR command and 
close the learn panel. 

8. Click "Save" again to save the command to your configuration and close the GC 
button panel. 
 

• You may import an IR command from an existing TouchControl button, or from raw hex 
code data (in Pronto CCF format): 

1. Click "Import" to open the import panel. 
2. Select "TouchControl Button" to import from an existing button, or select "Raw 

HEX Code" to import from CCF hex codes. 



Page 44 of 199 
Back to top 

3. Set the module, connector, and repeat count you'd like to use for the command 
(consult your GC device documentation for the correct values for these settings). 

4. If importing from an existing button, select the desired button in the 
device/button tree view.  Only buttons that already contain IR command data 
will be available to import from. 

5. If importing form CCF hex codes, paste/enter the codes into the code window. 
6. Click the "Import" button. 
7. The resulting GC code will be displayed in the code window. 
8. Click "Save" to save the command to your configuration and close the GC button 

panel. 
 

• Also, for GC IR buttons, click the "Find" button to open a panel to download ready-to-
use codes from Global Caché online IR code database (ControlTower).  This panel will 
allow you to search through device brands, types (i.e. "TV", "Receiver", "Amplifier", 
etc.), models, and functions to find the exact code needed for the button you are 
configuring.  Over 138,000 code sets are freely available via this feature.  You may set 
the module and connector on this panel, or adjust it on the edit panel, which is 
displayed after you select a code to use from the online database. 

• Relay (contact closure) commands are added using the provided interface.  Using the 
"Edit" button, you may "Set" the relay state to "1" or "0" and choose the GC module and 
connector address that you'd like to set.  Or you may "Get" the relay state from a 
specified connector address, in which case you can use feedback script to process the 
returned state and act upon it accordingly. 

 

Once you have set the command for the GC button, you may drag and drop it on any remote 
activity layout and configure it as needed. 
 
When configuring Global Caché buttons, you may also specify script variables for the module 
and/or connector addresses (rather than the normal static numeric values for these settings).  
Then at run-time, TouchControl will substitute the value of the script variables for the module 
and/or connector addresses, allowing you to dynamically change the target module and/or 
connector on the fly.  This would primarily be used along with the dynamic IP address variable 
feature, which allows you to dynamically change the IP address of a remote interface host (such 
as a Global Caché device) at runtime.  For example, if you have multiple Global Caché adapters, 
each of them controlling a satellite TV set-top box (which would use the same commands), but 
those boxes are controlled through different module and/or connectors on the various GC 
adapters, you could set both the dynamic IP address variable, and the dynamic 
module/connector variables, allowing you to use the exact same remote control layout, but 
target different devices in different rooms simply by updating a few script variables on the fly. 
 



Page 45 of 199 
Back to top 

To set dynamic module and/or connector address variables, select the "Dynamic" check box 
under the module and/or connector addresses, and enter %varname% in the field provided - 
including the beginning and ending percent signs, and where "varname" is some unique 
variable name that you will set via script a run-time.  It is your responsibility to ensure that the 
variables are set, and that the variable values contain numeric values equal to the module 
and/or connector addresses that you require.  If the variables are not found, whatever static 
value that is set in the button config will be used instead.  If the variables are found but do not 
contain valid module and/or connector values, the button commands will not work. 
 
Similar to the TouchControl “EventTrigger” button type (to control IP devices, for example), 
when GC buttons are activated on your TouchControl remote screens, the commands are sent 
directly to the GC device over the network, and do not pass through your TouchControl Server.  
Therefore, for activities that use GC buttons exclusively, you do not need to have your 
TouchControl Server running to use them.  All other features of GC buttons work similar to 
other TouchControl button types (as documented here). You may test them in TouchControl 
Server, add them to macros, set delay touch, use them as 
AutoExec/AutoAppear/AutoResume/AutoExit buttons, etc., and the free PC Remote feature in 
TouchControl Server supports Global Caché buttons as well.  Please make sure you've read the 
documentation for your Global Caché device and understand how it works.  Support for GC 
devices can be found at http://www.globalcache.com. 
 
GC serial buttons also have the ability to receive feedback from the devices they control.  If you 
wish to process the feedback from this button using custom script, select the Feedback Script 
option and enter/paste your JavaScript in the provided text box. 
 
GC serial buttons can also send raw HEX commands to devices.  To send a HEX command, enter 
the following in the GC serial command textbox when configuring a button: 
 
0x:64A783FD546D3265 
 
...where "0x:" is a required prefix, and the remaining data is your HEX command, with no spaces 
or other special characters.  HEX commands must contain an even number of characters (not 
including the "0x:" prefix). 
 
You may also send mixed ASCII and HEX commands. To send a mixed command, enter the 
following in the EventTrigger command textbox when configuring a button: 
 
MYCOMMAND\x02\x5F\x00\x2F\x41\x0D 
 

http://www.globalcache.com/


Page 46 of 199 
Back to top 

...where "MYCOMMAND" is the ASCII portion of the command, and each HEX digit is prefixed 
with "\x" to denote it's HEXed-ness. ASCII characters may reside at anywhere within the 
command and may exist in multiple locations in the command. 
 
Note that when entering HEX or mixed commands, the "Command Terminator" character is 
ignored, and any specific terminator required must be included within the command itself. 
 

Pre-Script & Post-Script 
Enter any desired pre- or post-script for the button. See this page for more information. 
 

HTTP Request Buttons 
 

HTTP Request buttons allow you to send commands/data to HTTP devices, servers or services 
directly from TouchControl on your device. 
 

Add HTTP Request buttons 

• Use Interface Manager (in TouchControl Server Settings) to add an HTTP Request server 
to your configuration. 

• Add a new button to one of your devices, and select “HTTP Request” as the button type, 
and optionally select repeating as desired. 

• Configure the new button using the “Set Data” button. 

o Select the server you wish to control using the "Host" drop-down list.  If the server 
you wish to control is not listed, click the “Manage” button to add the server, and 
then select it when you are returned to this panel. 

o Select whether the HTTP Method for the request will be "GET", "POST", or "PUT". 

o Select the "HTTPS" option if the request should use the HTTPS protocol. 

o Enter the path to the web service on in the "Path" field.  This is the part of the 
service URL that follows the host name/IP and port number.  This should not start or 
end with a slash. For example, enter "MCWS/v1/Playback/Stop" to trigger the "Stop" 
command in J.River Media Server.  The Path parameter may be empty if needed. 

o For GET HTTP requests, enter the query parameters for the service, if any, in the 
"Query" field.  This should not start with a "?".  For example, enter 
"Zone=2&ZoneType=Id" for the J.River “Stop” command if you wish to control a 
different zone.  The Query parameter is not required. 

o For POST or PUT HTTP requests, enter any parameters in the "Body" field.  The 
parameters should be in the format:   

field=value&field2=value2&field3=value3&etc... 



Page 47 of 199 
Back to top 

o HTTP Request buttons also support submitting XML data in the "Body" field.  This 
enables the use of services such as UPNP or JSON-RPC, which require posting XML 
data to the destination server.  Simply enter the XML/JSON data directly into the 
"Body" field when the POST method is selected. 

o If you have designated your HTTP request button as a "feedback" button (when 
creating the button in TouchControl Server), the response from the HTTP request 
will be returned to the client app.  If you would like to process that feedback using 
custom feedback script, select the Feedback Script checkbox, and enter your custom 
feedback script as desired in the "Feedback Script" field. 

o If your HTTP request requires any custom HTTP headers, those headers may be 
added to the request using the button properties feature.  Button properties can be 
accessed either by right-clicking a button in the Buttons list, or after a button has 
been dropped onto a layout by right-clicking on the button within the layout and 
selecting "Properties..." from the popup menu.  All HTTP Request buttons will have a 
built-in property named "HTTPHeaders".  Select this property, and enter the custom 
headers for the HTTP request in the following format: 

headername1=headervalue1^headername2=headervalue2^headername3=header
value3^etc... 

o Once you've entered the desired headers in the value field, click the + button to add 
the headers to the button's properties list, then click Save to exit the properties 
dialog. 

o If your HTTP request required authentication, the needed credentials (username and 
password) may be added to the request using the button properties feature as well.  
All HTTP Request buttons will have a built-in property named "HTTPAuth".  Select 
this property, and enter the authentication credentials in the following format: 

username:password 

o Once you've entered the desired credentials in the value field, click the + button to 
add the credentials to the button's properties list, then click Save to exit the 
properties dialog.  

You may test the button from TouchControl Server by clicking the "Test" button on the button 
configuration panel. 
 
This feature is not used to load web pages to view on your device.  To load a web page in a 
remote activity screen, use the new "Web View" button type.  Also, to launch the browser on 
your device and load a specified URL, use the "URL" button type. 
 



Page 48 of 199 
Back to top 

Pre-Script & Post-Script 
Enter any desired pre- or post-script for the button. See the Advanced Scripting topic for more 
information. 
 

iRTrans Buttons 
 

Note: iRTrans integration is available as an upgrade via an in-app purchase within the 
TouchControl app on your device. If you haven't purchased that upgrade (found under 
"Settings"), any iRTrans buttons you add to your remote layouts will not be accessible on the 
device. Purchasing the upgrade will enable any existing and future iRTrans buttons to appear. 
The iRTrans interface in TouchControl allows you to control iRTrans LAN devices directly from 
your iOS device, without passing through your TouchControl Server. This interface is available 
within TouchControl on your iOS device as an in-app upgrade, but like all other TouchControl 
functionality, can be fully configured and tested in TouchControl Server before purchasing the 
device upgrade.  TouchControl does not support iRTrans USB devices. 
 
IMPORTANT: The minimum required iRTrans firmware version supported by TouchControl is 
1.11.00.  
 
Use Interface Manager (in TouchControl Server Settings) to add an iRTrans host to your 
configuration. 
 

Add iRTrans buttons to your activities 

• On the main TouchControl Server panel, select a TouchControl device (or create a new 
device and select it in the device list), and click “Add Button”.  

• On the “New Button” panel, give the button a name, select the "iRTrans" button type, 
and optionally set the button as repeating, set the repeat interval, set it as a timer 
button, and/or enable for feedback as desired.  

• Click “Add” to create the button. (Note that when adding iRTrans buttons, they will 
display as type "TRANS" in the buttons list).  

• Once the new button is added, highlight the new button in the Buttons list and click "Set 
Data" (or double-click the button in the list). The iRTrans Command panel will display.  

• The default iRTrans device (entered in Interface Manager above) will initially display for 
each iRTrans button. To set the desired device, simply choose it from the Host drop 
down list. If the iRTrans device you want to control with this button is not listed, click 
the "Manage" button and add the needed iRTrans device, and then select it when you 
are returned to this panel. 

• iRTrans commands may be added to the button using the following methods:  



Page 49 of 199 
Back to top 

 
"Edit" mode 
This method may be used to select commands stored internally in your iRTrans module.  

o After clicking the "Edit" button, you may then select the type of command to use 
for this button.  Selecting the "snd" or "sndr" command types will access your 
iRTrans module and list all internally stored remotes and their associated 
commands.  Simply navigate the remote/command list and select the command 
you wish to use for this button.   

o Alternately, selecting the "sndhex", "sndccf", or "sndccfr" command types will 
present you with a blank input box where you may manually enter or paste the 
command to use for this button.  Please consult your iRTrans device 
documentation for more information on the correct format and content for 
these types of commands.  When selecting "sndhex", "sndccf", or "sndccfr" 
command types, you do not need to include the command type within the 
command itself - it will be automatically added for you and shown to you after 
saving the command.   

o Lastly, selecting the "[other]" command type will allow you to enter a fully 
custom command as needed. 

o When in edit mode, each of the different command types also have additional 
options you may select if desired to further configure the commands (listed 
under the "Options" title to the left of the command input box on the edit 
panel).  These settings have default values that will be used unless you change 
them.  Please consult your iRTrans documentation for more information on 
these options and their use. 

"Learn" mode 
You may also learn iRTrans IR commands through the iRTrans LAN device directly in 
TouchControl Server: 

o Click "Learn" to open the IR learn panel. 

o The "sndhex" option will be automatically selected, which is required for any 
learned HEX codes. 

o Click the "Start" button. 

o Point your device’s original remote at the IR receiver on the iRTrans device and 
press the desired remote button to learn. If the command is not detected within 
15 seconds, the learning process will timeout and you will need to try again. 



Page 50 of 199 
Back to top 

o When the command is learned, the IR data window will populate with the 
iRTrans IR command data (it may take more than one attempt to successfully 
learn a given command). 

o Change any of the optional settings to the left of the IR code window. See your 
iRTrans documentation for more info on these settings.  The default settings 
should work in the majority of cases. 

o Click the "Save" button to generate and display the full iRTrans IR command and 
close the learn panel. 

o Click "Save" again to save the command to your configuration and close the 
iRTrans button panel. 

 
"Import" mode 
You may import an IR command from an existing TouchControl button, or from raw hex 
code data (in Pronto CCF format): 

o Click "Import" to open the import panel. 

o Select "TouchControl Button" to import from an existing button (Windows only), 
or select "Raw HEX Code" to import from CCF hex codes (on macOS, importing 
raw codes is the only available option). 

o If importing from an existing button, select the desired button in the 
device/button tree view. Only buttons that already contain IR command data will 
be available to import from. 

o If importing form CCF hex codes, paste/enter the codes into the code window. 

o Click the "Import" button. 

o The resulting iRTrans code will be displayed in the code window. 

o Change any of the optional settings to the left of the IR code window. See your 
iRTrans documentation for more info on these settings. The default settings 
should work in the majority of cases. 

o Click "Save" to save the command to your configuration and close the iRTrans 
button panel. 

• Once you have set the command for the iRTrans button, you may drag and drop it on 
any remote activity layout and configure it as needed. 

Similar to the TouchControl “EventTrigger” or "Global Caché" button types, when iRTrans 
buttons are activated on your TouchControl remote screens, the commands are sent directly to 
the iRTrans device over the network, and do not pass through your TouchControl Server. 



Page 51 of 199 
Back to top 

Therefore, for activities that use iRTrans buttons exclusively, you do not need to have your 
TouchControl Server running to use them. All other features of iRTrans buttons work similar to 
other TouchControl button types (as documented here). You may test them in TouchControl 
Server, add them to macros, set delay touch, use them as 
AutoExec/AutoAppear/AutoResume/AutoExit buttons, etc., and the free PC Remote feature in 
TouchControl Server supports iRTrans buttons as well. Please make sure you've read the 
documentation for your iRTrans device and understand how it works. Support for iRTrans 
devices can be found at http://www.irtrans.com/. 
 

Pre-Script & Post-Script 
Enter any desired pre- or post-script for the button. See this page for more information. 
 

Macro Buttons 
 

Macros (multiple commands sent with one button click) can easily be created by adding a 
button of type "Macro" to any device.  Macros are created by combining other existing buttons 
in a list, which are then executed in order when the macro button is activated (pressed).  To 
create macros from existing buttons, use the "Button Macro" option at the top of the Macro 
panel (accessed by selecting a macro button and clicking the "Set Data" button).  Using this 
option will present an interface for visually generating macros by selecting existing buttons 
(which already have commands defined) and adding them to the macro using the "+" button.  
You may also add pauses (both the 1 sec. pause - "!", and the .1 sec. pause - "."), rearrange the 
macro commands, and remove commands from the macro by clicking the appropriately labeled 
buttons. 
 
When adding pauses, you can configure those pauses to repeat up to 600 times in succession.  
This keeps you from needing to add a sequence of multiple pauses to make your macro pause 
some lengthy amount of time.  To repeat a pause, add a pause to your macro, then right-click 
on the pause symbol ("!" or ".") in the macro list, and use the provided numeric control to set 
the number of times that pause will occur in succession at that location in the macro.  The 
pause repeat count will be displayed next to the pause symbol. 
 

Blocking vs. non-blocking pauses 
By default, pauses you add to macros are "non-blocking", meaning that when the macro 
reaches the pause, any other button presses that have occurred while the macro was 
processing up to the pause will process during the pause.  If you would rather all other button 
presses wait until after the macro has completed, you can make the pauses "blocking".  To 
create a "blocking" pause, right-click on the pause symbol ("!" or ".") in the macro list, and use 
select the "blocking" option on the panel that appears.  An "X" will appear next to the pause 
symbol to alert you that it is now a blocking pause.  
 

http://www.irtrans.com/


Page 52 of 199 
Back to top 

Macros can include IR, Command, AutoHotKey, EventTrigger, Global Caché, HTTP Request, URL, 
or Link buttons.  Macros may also contain other macro buttons.  Note that any macros that 
contain other macros that have already been included via another macro will be ignored to 
eliminate the possibility of an endless loop. 
 

IMPORTANT:  Be careful when executing macro buttons from a slider, gesture pad, or 
from other repeating buttons, especially if the macro includes long-running buttons, 
buttons that request and process feedback, or includes pauses.  Commands can be sent 
very quickly when being executed in this manner, and if commands must execute in a 
given order, or wait for feedback to arrive and then be processed, fast/repeated 
executions of macros can cause unexpected results.  For this reason, TouchControl will 
not allow more than one instance of a given macro to be running at any given time.  If a 
macro is running and another instance of the same macro is attempted to be executed 
(such as when executing from a slider, gesture pad, etc.), that subsequent instance of 
the macro will not run.  It will not queue up and run later – it simply will be skipped. 

 

MacroMessage 
If you would like to display a message on the screen while a long-running macro is executing, 
enable the "MacroMessage" feature.  When enabled, TouchControl will look for a specifically-
named Label button on your activity to display over all other buttons on your layout.  This label 
will appear when the macro begins executing, and will disappear when the macro ends.   
 
With this feature enabled, TouchControl will look for a Label button named "_macroMessage" 
(note the button MUST be a Label type button, and the name is case-sensitive) on your layout.  
If found, that button will be re-sized/positioned over your layout using size/position parameters 
that you specify.  The _macroMessage button can contain any text that you wish by configuring 
the text of the label, and may be visually configured (image, colors, etc.) just as any other label 
using the configuration options on the pop-up menu when right-clicking on the label on your 
layout.  To provide size and position parameters, add the "DisplayFrame" property to the label 
(right-click on the label and select Properties..., then select the "DisplayFrame" property from 
the "Name" drop-down list).  The value for the DisplayFrame property must be in the following 
format: 
 
 left,top,width,height 
 
The parameters for this property may contain exact pixel positions, (such as 100,100,200,300), 
or may contain the following size and position values/keywords: 
 

percentage  - when supplying a percentage value (e.g. 80% or .8) in the left or top 
location, positions the label the given percentage from the left or top of the 



Page 53 of 199 
Back to top 

screen, and when used in the width or height location, sizes the label at the 
given percentage of the screen width or height. 

center  - when used in the left location, centers the label horizontally on the screen, and 
when used in the top location, centers the label vertically on the screen (case-
sensitive) 

full  - when used in the width location, sizes the label to fill the screen horizontally, and 
when used in the height location, sizes the label to fill the screen vertically (case-
sensitive) 

Using the DisplayFrame property allows you to add the _macroMessage label to your layout as 
a small, disabled button and locate it anywhere on your layout, and TouchControl will re-size 
and re-position it according to your DisplayFrame configuration at run-time.  As an example, 
use 0,0,full,full to cover the entire screen on any device with the _macroMessage label while a 
macro is executing. 
 

Press & Release macros 
An additional type of macro is the "Press & Release" button macro.  Press & Release macros are 
simple two-step macros that execute on command on button press, and another command on 
button release.  These macros, created in the same manner as normal macros (above), allow 
you to add a single button to the press action, and a single button to the release action.  Press 
& Release buttons may be held "down" as long as desired, to space out the press & release 
actions as long as necessary for your use.  This can be especially useful, for example, when used 
with AutoHotKey, to send key "down" commands (i.e. {LCTRL DOWN}) to your computer on 
press, and then key "up" commands (i.e. {LCTRL UP}) to your computer on release.  
 

Release-only buttons 
A variation on the Press & Release macro, you may optionally specify an activity only for the 
"release" action in a Press & Release macro to generate a button that only sends its command 
once you release it. Once you press the button, as long as your finger does not move, releasing 
the button will send the button's command. If, while holding down the button, your finger 
moves, this will cancel the command. This can be useful to provide a safeguard for those 
buttons that you may accidentally press while grasping the device (but not intending to press 
any button), but which can cause headache or havoc if executed at the wrong time - such as 
"All Off". You can also specify a "Pressed image" for the button if desired so that it changes 
state while you are pressing it to give you some visual feedback. 
 

Slider Buttons 
“Slider” buttons are visual controls used to select a single value from a continuous range of 
values.  Sliders are displayed as bars, with an indicator, or thumb, indicating the current value 
of the slider which can be moved by the user to change the setting. 
 



Page 54 of 199 
Back to top 

Sliders are implemented in TouchControl as a “composite” button type, meaning they are 
buttons that are made up of, or execute the commands of, other pre-defined buttons.  The first 
step in using a slider is to create buttons that execute the commands that you want the slider 
to execute when you move the slider’s thumb.  Sliders can be used, for example, as an easy, 
visual, quick, and intuitive way to change volume for a device. 
 

IMPORTANT:  Be careful when executing buttons from a slider that take a long time to 
complete, that request and process feedback, or when executing macros from sliders.  
Commands can be sent very quickly when moving a slider back and forth, and if 
commands must execute in a given order, or wait for feedback to arrive and then be 
processed, fast/repeated executions of long-running buttons or macros can cause 
unexpected results.  For this reason, TouchControl will not allow more than one 
instance of a given macro to be running at any given time.  If a macro is running and 
another instance of the same macro is attempted to be executed (such as when 
executing from a slider), that subsequent instance of the macro will not run.  It will not 
queue up and run later – it simply will be skipped. 

 
When configuring a slider button, you select the slider’s minimum, maximum, and increment 
values.  These define the starting and ending values for the slider, as well as the values at each 
position along the slider’s bar.   You may also select an initial value for the slider, which to force 
the slider’s thumb to a given position when it is initially displayed. 
 
The action triggered by the slider at each position can be defined using two different methods: 
 

Action when sliding 

This method allows you to define a primary TouchControl button (IR, Command, AutoHotKey, 
EventTrigger, or HTTP Request) which will be executed at each position along the slider’s bar 
when sliding in each direction.   Simply select the device/button to execute from the drop-down 
lists for both the “Left” and “Right” slider directions. 
 

Action at each stop 

This method allows you to define a single, primary TouchControl button (IR, Command, 
AutoHotKey, EventTrigger, or HTTP Request) which will be executed at each “stop” or 
“position” along the slider’s bar.  Simply select the device/button from the drop-down lists.  The 
configured code for this button contains a special flag that, when used as a slider action, is 
dynamically replaced with the slider value before the button is executed.  For example, to 
adjust the volume on a Denon receiver, a volume button used with a slider would have code 
that looks like this: 
 
MV%value% 
 



Page 55 of 199 
Back to top 

In this example, “%value%” is replaced at runtime with the value from the slider, resulting in 
the command MV30 (for example) being sent to the receiver when the slider passes over or 
lands on the value “30”.  So, wherever you place the string %value% in the button’s command 
will be replaced with the value from the slider at each stop/position before executing the 
specified button command. 
 
If the device you are controlling requires HEX values as commands (such as the Insteon 
SmartLinc network adapter, and many others), you may force TouchControl to convert the 
slider's value to HEX by using the substitution string "%0x:value%" instead.  This will convert the 
slider's integer value to its two-character HEX equivalent before substituting it into the 
command (i.e. the integer value 0 would convert to "00", 10 would convert to "0A", 255 would 
convert to "FF", etc.). 
 

"Snap to touch" slider interaction 
When using the "Action at each stop" slider type, you may now specify that the slider should 
"Snap to touch", which allows you to touch the slider at any location, and the slider value will 
"snap" to that location. Without this feature enabled, the slider only updates as you slide your 
finger across the slider bar. 
 

Action on release 
When configuring any slider, you may now specify an additional action to occur when you 
release the slider. For example, if you would like to execute one command while sliding the 
slider, and then execute a different command only once that uses the slider's final value, you 
could use the "Action on release" to perform that final action. Or alternately, if you don't want 
to execute any command while adjusting the slider, but then execute a single command when 
you are finished, you may select the "Action at each stop" slider type and select "[none]" for 
the action's device, then specify the command to execute on release only. This basically allows 
you to freely slide the slider without executing any commands, and then just execute a single 
command on release. This would be useful if the command you want to execute is either long-
running, or possibly runs feedback script that would result in "jerky" slider operation. 
 

TouchTips 
Slider buttons can also show a TouchTip, which is a small "bubble" that appears above your 
finger when you slide the thumb image back and forth over the slider.  For slider buttons, the 
TouchTip displays the slider's current value.  To enable the TouchTip, just right-click on the 
slider in the layout designer and select "Show TouchTip". 
 

Script 
The “Script” button will display a field that will allow you to enter JavaScript which will execute 
when you release the slider with your finger (after the "action on release" executes), and also 



Page 56 of 199 
Back to top 

when you execute a slider via script using the [#] script return string element.  See the Scripting 
topic for more information. 
 
Note that if you use full-screen activities and you add a slider button to a layout, the default 
activity swipe gestures that take you back to the previous screen could interfere with the 
swiping gesture required to move the slider.  If this is the case, you may wish to disable activity 
swiping via script. 
 

Spinner Buttons 
 

“Spinner” buttons use a spinning-wheel or slot-machine metaphor to show one or more sets of 
values.  Users select values by rotating the wheels so that the desired row of values aligns with 
a selection indicator.  
 
Spinners are implemented in TouchControl as a “composite” button type, meaning they are 
buttons that are made up of, or execute the commands of, other pre-defined buttons.  So, the 
first step in using a spinner is to create buttons that execute the commands that you want the 
spinner to execute when you spin the wheel.  For example, 0-9 channel buttons, or volume 
up/volume down buttons, etc.   
 
Select the type of spinner you would like: 
 

Numeric: 0-9:  This type of spinner adds the numbers 0 through 9 to each segment of the 
spinner’s wheel.  You may set any number of sections from 1 to 10.  Using channels 
again as an example, your cable/satellite box may allow up to 4-digit channels, so you 
would set the number of sections of the spinner to 4.  This would create a spinner that 
would allow you to select any 4-digit number from 0000 to 9999, and then send those 
numbers using the corresponding channel digit buttons.  This effectively creates a mini 
macro sending the four button clicks as a series of commands.  This spinner type 
automatically looks for buttons named “0” through “9” to execute for each value 
selected on the spinner, so those need to be created and available before using the 
spinner.  Those buttons do not need to be added to your activity. 

 

Numeric: Min-Max: This type of spinner adds the numbers from a minimum that you specify to 
a maximum that you specify, with the given increment that you specify.  Using volume 
as an example for this type, say you have a receiver that allows you to set the volume 
from 0 to 90. You would set the “Min” value for the spinner to 0, and the “Max” value to 
90.  For the most granular control over the volume, you would set the “Increment” to 1 
to give you 91 possible volume levels to scroll through.  Or, if you’d like the volume to 
be a little more responsive, you could set the Increment to a larger number so that the 
volume would change more for each “click” of the spinner.  If the practical volume range 



Page 57 of 199 
Back to top 

is really more like 30 through 60, you could make those the min and max to cut down on 
the number of options available on the spinner.  This type of spinner also gives you the 
ability to display the numbers (min to max for the given increment) on the spinner, or 
alternately display black bars that grow from left to right for each value on each row of 
the spinner.  This just gives you an alternate visual option to display on the spinner 
rather than the numbers.  For this type of spinner, a single button is specified which is 
executed at each stop of the spinner wheel.  The configured code for that button 
contains a special flag that, when used as a spinner action, is dynamically replaced with 
the spinner value before the button is executed.  For example, to adjust the volume on a 
Denon receiver, a volume button used with a spinner would have code that looks like 
this: 

 
MV%value% 
In this example, “%value%” is replaced at runtime with the value from the spinner, 
resulting in the command MV30 (for example) being sent to the receiver when the 
spinner lands on the value “30”.  So, wherever you place the string %value% in the 
button’s command will be replaced with the value from the spinner at each stop.  This 
button does not need to be added to the activity. 
 

Buttons:  This type of spinner lets you select multiple buttons to display on each row of the 
spinner, and then those buttons will be executed whenever the spinner lands on the 
corresponding value.  No command substitution is done for these buttons – they are 
simply executed as they are configured.  This gives you an option for adding more 
buttons to your activity than may fit on the screen, while still giving an easy way to 
access and execute the buttons. 

 

Free Text: Free Text spinners allow you to enter any text you wish for the spinner selections, 
and then execute custom script when an entry is selected.  Free Text spinners can also 
be displayed as a scrolling table list, with a check mark indicating the selected entry 
(rather than the standard spinner's normal selection bar).  The table option allows you 
to display a larger list on the screen than normal spinners, which are limited in their 
maximum height by the operating system on the iOS devices. 

 
Free Text spinners can also display images in their rows (in either spinner or table 
mode).   
 

The buttons used as commands for any of the first three types of spinners can be any of the 
“primary” button types, including IR, Command, AutoHotKey, EventTrigger, or HTTP Request.  
Those buttons may also be feedback buttons and contain feedback script, and the feedback and 
script will be processed just as if the buttons were normal stand-alone buttons.  
 



Page 58 of 199 
Back to top 

Spinner buttons can either be placed freely within a remote layout (just like any other button), 
or they can be "docked" to the bottom of the activity view.  Spinner buttons which are 
"docked" can also be set to “auto hide”, which initially hides the spinner at the bottom of the 
screen, displaying only a thin bar with the spinner’s name, and then “popping up” from the 
bottom of the view when that bar is tapped. 
 
In the case of “Numeric: 0-9” spinners or "Custom" spinners, when the spinner is showing on 
the screen it will have a “Go” button above it which will send the entire series of digit-button 
commands (0-9), or the custom button command when pressed.  This allows you to set all 
sections of the spinner to the desired digits and then execute them all together, or re-execute 
the command without first having to change the spinner to re-select the entry(s).  If the spinner 
is set to auto-hide, the spinner will hide itself after it sends the button commands. 
 
In the case of “Numeric: Min-Max” spinners, the configured button is executed immediately 
when the spinner comes to rest on a row/value.  If the spinner is set to auto-hide, the spinner 
will hide itself when the button bearing its name immediately above it is tapped. 
 

Grids 
A unique button presentation feature is available - referred to as a "grid" - which allows you to 
lay out multiple buttons in a free-flowing, independently-scrolling grid layout within your 
activities.  The grid is configured as a spinner button, using the "Buttons" mode, which allows 
you to add buttons from your configuration to the spinner (or grid in this case), and then 
selecting the "Display as grid" option in the spinner configuration will trigger the spinner to 
display as a grid on your iOS device. Please see this page for more information. 
 
You may set a spinner’s background color, select a background image for a spinner, and/or set 
the spinner’s text color via the normal designer menu options once added to an activity layout. 
 

Gesture Pad Buttons 
 

Gesture Pads are buttons that recognize different gestures on the iOS device screen.  The 
supported gestures are: 

• Swipe Up: Swipe your finger in an upward direction over the gesture pad 

• Swipe Down: Swipe your finger in a downward direction over the gesture pad 

• Swipe Left: Swipe your finger to the left over the gesture pad 

• Swipe Right: Swipe your finger to the right over the gesture pad 

• Rotate Left: Place one finger on the gesture pad and rotate it counterclockwise 

• Rotate Right: Place one finger on the gesture pad and rotate it clockwise 



Page 59 of 199 
Back to top 

• Tap: Tap your finger once on the gesture pad 

• Double Tap: Tap your finger twice on the gesture pad 

For swipes and rotates, the gesture pad will send continuous commands during the life of the 
swipe or rotation (as long as your finger continues to move on the device's screen).  That is, it 
will act like a hold-to-repeat button, repeating commands during the gesture.  Taps will only 
send a single tap when the gesture is recognized. 
 

IMPORTANT:  Be careful when executing buttons from a gesture pad swipe or rotation 
that take a long time to complete, that request and process feedback, or when 
executing macros from gesture pads.  Commands can be sent very quickly when swiping 
or rotating, and if commands must execute in a given order, or wait for feedback to 
arrive and then be processed, fast/repeated executions of long-running buttons or 
macros can cause unexpected results.  For this reason, TouchControl will not allow more 
than once instance of a given macro to be running at any given time.  If a macro is 
running and another instance of the same macro is attempted to be executed (such as 
from a gesture pad swipe or rotation), that subsequent instance of the macro will not 
run.  It will not queue up and run later – it simply will be skipped. 

 
After adding a gesture pad to your configuration, when you click the "Set Data" button for the 
pad, you will be presented with a configuration dialog in which you will configure the command 
to be sent for each desired gesture.  Select the checkbox next to each gesture that you'd like 
the gesture pad to recognize, and click the “Action >>” button to select its action.  Gesture pad 
actions are other buttons that you've already configured with IR, command, AutoHotKey, 
EventTrigger, Global Caché, or HTTP Request functions.  Therefore, you must configure 
individual buttons with the commands you'd like the gesture pad to send, but those other 
buttons do not need to be placed on your activity layouts.  For example, to control the volume, 
you'd create "Vol+" and "Vol-" buttons configured with the desired IR, command, AutoHotKey, 
EventTrigger, etc.  data, and then create a "Volume" gesture pad which uses "Vol-" as the 
rotate left action, and "Vol+" as the rotate right action. 
 

Hold To Repeat 
Up, down, left and right swipe gestures on a gesture pad can optionally be configured for “Hold 
to repeat”.  This feature allows you to swipe in a given direction, and when you pause the swipe 
but leave your finger on the screen, the gesture pad will continue to send the action commands 
for the current swipe direction without further swipe movement required.  Lifting your finger 
off the screen or continuing the swipe motion will cancel the repeating commands.  Each 
distinct swipe direction may be independently configured for hold to repeat.  Repeated 
commands are sent at the rate defined by the gesture pad's "Repeat interval" setting.  



Page 60 of 199 
Back to top 

 
2-Stage Buttons 
2-stage buttons allow you to place a gesture pad on a layout, and when that gesture pad is 
tapped or double-tapped, a “real” button appears over your layout which you can tap to 
execute the intended command. This could be useful if you have a layout with many buttons on 
an iPhone or iPod, and don’t have room for all of the buttons’ full text. A small image or hot-
spot could be used for each button, and then when tapped, a “clickable” button would appear 
with the full button text. 2-stage buttons also display a dismiss icon (red “X”) that allows you to 
dismiss the button without actually executing it. This could also be useful for a button that has 
a long running macro (e.g. starting up your theater, adjusting lights, opening/closing blinds, 
etc.), and you sometimes accidentally tap it at the wrong time. Using a 2-stage button, you 
would in essence have the chance to confirm or dismiss the actual execution of the button 
before possibly executing a destructive command or macro. 
 
2-stage buttons are implemented via the tap and double-tap gestures on a gesture pad. When 
you select the “Tap” or “Double Tap” options during gesture pad configuration, you may 
optionally select the “2-Stage” option, and select the “action” for the tap gesture just as you 
would for any other gesture. The button selected as the tap/double-tap gesture “action” will be 
the button used for the 2-stage command. 
 

Gesture Pad Mousepad (Windows server only) 
Gesture Pads can also act as stand-alone mousepads.  When configuring the gestures for a 
Gesture Pad, select "Mousepad" and the entire gesture pad will automatically expose the 
gestures needed to perform mouse and keyboard operations.  The following gestures are 
supported on Gesture Pads in mousepad mode: 

• One-finger swipes for mouse movement 

• Two-finger swipes for scrolling (horizontal and vertical) 

• One-finger tap for mouse left-click 

• Two-finger tap for mouse right-click 

• One-finger long-press for mouse drag (one-finger long-press or one-finger tap to end 
dragging) 

• Two-finger long-press to show keyboard 

• Two-finger pinch zoom in/out 

One or more Gesture Pad Mousepads may be added to any activity layout, and can be resized 
and/or rotated, and can have any image background, just like any other button.  You may also 
drop other buttons around or on top of your Gesture Pad Mousepads within your layouts to 
create a completely custom mouse/keyboard-enabled activity. 



Page 61 of 199 
Back to top 

 
Script helper functions are also available to show/hide the mousepad keyboard and text input 
field (in addition to using the two-finger long-press).  The following functions can be used in a 
script button or in any script in any other button type to show or hide the mousepad keyboard: 

• _showGPKeyboard('padName'); - Show the keyboard for a specified gesture pad 
mousepad 

• _hideGPKeyboard(); - Hide the gesture pad mousepad keyboard 

• _toggleGPKeyboard('padName'); - Show/hide the keyboard for a specified gesture pad 
mousepad 

 
 

Redirect Mouse & Keyboard Control 
Gesture Pad Mousepads can also be used to control the mouse and keyboard on computers 
other than the primary TouchControl server system.  All Gesture Pads have a built-in property 
named "MouseServer".  Set this property to a value equal to the IP address and TouchControl 
Server port of the Windows PC you want to control as follows: 
 
 192.168.1.100:8822 
 
The port can be found on the settings page of TouchControl Server on the system you want to 
control. When the activity with this Gesture Pad Mousepad renders, all mouse movements and 
keyboard commands will be sent to the specified server.  Therefore, the requirement for this is 
that TouchControl Server be running on the alternate PC.  It can be minimized to the system 
tray, etc., to keep it out of the way, and does not need to be used for any configuration or other 
function if not needed. 
 
The alternate system for the gesture pad Mousepad can also be set or changed at runtime.  
Simply use script to change the "MouseServer" property, either setting a new IP:Port to target a 
different system, or set the property to a blank string to default back to the primary 
TouchControl Server (the server where the client's configuration is refreshed from).  Set the 
property via script as follows: 
 
_setProperty('myGesturePad', 'MouseServer', '192.168.1.101:8822');  // set to alternate server 
 
_setProperty('myGesturePad', 'MouseServer', '');  // default to primary server 
 
This would allow you to use one mousepad to control multiple systems, switching between 
them with just a tap of a button (which would run the above script).  
 



Page 62 of 199 
Back to top 

Swipe Velocity 
When configuring a gesture pad to use swipe gestures, or as a gesture pad mousepad, enabling 
the "Use swipe velocity" option will use your swipe velocity to adjust the resulting actions - 
commands will be executed at a faster rate as the velocity of a swipe increases, and the velocity 
of the mouse movement on your computer screen will be increased as you swipe faster on the 
mousepad on your iOS device.  There is currently no option to adjust the swipe velocity setting. 
NOTE: Please be aware that when using full-screen activities on the iPhone/iPod, other swipe 
gestures (swipe down and/or swipe right) are added to the activity window to allow you to 
return to the main activities home screen (since there is no navigation bar with the "Activities" 
button to take you back to that screen).  When using any Gesture Pad with a swipe gesture 
(including a Gesture Pad Mousepad), these swipe gestures will be disabled, as they can 
interfere with the swiping action of the Gesture Pad button.  In this case, use the long-press 
gesture on your activity background (i.e. not on any button) to display the navigation bar which 
will allow you to return back to the main activities screen or last activity. 
 

Link to Activity Buttons 
 

Link to Activity buttons allow you to add buttons to your layouts that, when tapped, will load 
another TouchControl activity.  When configuring a link button, you must select which other 
activity will be opened when the button is tapped, or you may select "[go back]" as the link 
action, which will simply return you to the previous screen. 
 
Link to Activity buttons, by default, will retain the history of the current activity so that when 
you "go back" from the new activity, you will be back to the original activity that contained the 
link button.  However, you may also specify that the link button should not retain history (un-
select the "Retain History" option), in which case when you return from the linked-to activity, 
you will return directly to the "Activities" home screen (or the activity before the last activity, if 
you have linked multiple times to get to the currently displayed activity). 
 
One important item to note about Link buttons is that if you have many activities that link to 
each other, TouchControl will ensure that there is only one instance of any given activity "alive" 
at any given time.  For example, assume you have activities A, B, and C.  If you link from activity 
A to activity B, they are both "living" within the app.  If you then go "back" from activity B to 
activity A, activity B is gone and only activity A is "alive".  Makes sense.  So now assume you link 
from activity A to activity B, and then from activity B to activity C.  Now you have three activities 
in the "stack" of living activities within the app - A->B->C.  But then instead of going "back" from 
activity C to activity B, you link forward to activity A again.  In this case, instead of loading a new 
instance of activity A, TouchControl finds the existing activity A in the "stack" of activities and 
moves it to the top.  So now you still have three activities in the stack, but they are now 
ordered B->C->A.  So, if you go "back" from A, you'll find C, then back from C to B, the back 
from B to the main activities screen.  A very important thing to understand about this is that 



Page 63 of 199 
Back to top 

when activity A is moved from the bottom of the "stack" to the top, it maintains its "state" as 
far as any scripting variables, or AutoExec, or UI updates are concerned.  So, if you expect an 
AutoExec on Load button to execute each time you enter activity A, for example, in this case it 
will not execute, because the "state" of activity A has been preserved, and the AutoExec on 
Load would have already executed when A was originally loaded.  One way around this, and 
something that might be suggested if you have many links from activity to activity and possibly 
have multiple "paths" of getting to any one activity, is to turn off the "retain history" setting on 
your link buttons, so that you always only have one activity living in the app at any given 
time.  This will not only ensure that you get a "fresh" instance of any given activity each time 
you enter it, but will also help with memory consumption so that you don't have many activities 
loaded simultaneously that you may not go back and use during a given session.  Another 
option is to use an AutoExec on Appear button, which executes each time an activity appears 
on the screen, whether or not it is already living somewhere down in the stack of activities. 
 

Dynamic Links 
When configuring a Link button, you may select the "Dynamic" option, which allows you to 
enter a %varname% _local or _global dynamic substitution variable name (rather than selecting 
a static activity), which will be queried at run-time to determine the activity to link to.  The 
variable name must exist in the _local or _global script object, and the value of the 
_local/_global.varname variable must contain an activity in the following format: 
 

location^activity 
 

...where location is the name of any location in your configuration, and activity is the name of 
any activity within that location, joined by the "^" character.  An example of the above would 
involve simply entering: 
 

%myLinkActivity% 
 

into the Link to Activity field, and then at run-time, create a variable in script as follows: 
 

_local.myLinkActivity = "Theater^Watch TV"; 
_global.myLinkActivity = "Theater^Watch TV"; 
 

Pressing the link button on your layout will then link to the "Watch TV" activity in the "Theater" 
location (as an example). 
 
You may also manage the location and activity separately in the activity link field as follows: 
 
%locationVar% - %activityVar% <-- uses two separate variables 



Page 64 of 199 
Back to top 

%locationVar% - MyActivity  <-- uses a variable for the location and specifies a static 
activity name 
MyLocation - %activityVar%  <-- uses a variable for the activity and specifies a static 
location name 
 
In the above examples, the variables (_local/_global.locationVar and _local/_global.activityVar) 
must contain only the location or activity name (respectively), and the location and activity 
entered in the field must be separated with " - ", just as all other location - activity pairs in the 
drop down "Link to Activity" list. 
 
Note that the location and/or activity names referenced in the _local or _global variables must 
match exactly, including upper/lower case, etc.  It is your responsibility to ensure that the 
_local/_global.varname variable contains the desired location and/or activity names prior to 
executing the link button at run-time.  If the variable does not exist or does not contain a valid 
location and/or activity name, the link button press will be ignored.  
 

Link Pre-Script 
When configuring a link button, you can supply pre-script which will run immediately before the 
link is executed.  This could be useful in conjunction with the above "dynamic link" option to 
modify the destination of the link before it is executed.  Also, just as with other button pre-
script, including the string '[*]' embedded somewhere in the value returned from the script will 
cancel the button command, which in this case will cancel the link action. 
 

Background Links 
Link to Activity buttons may also be specified as "Background", in which case the linked-to 
activity will become a "background" activity.  Background activities are activities that appear 
"behind" other activities – or in the “background”.  These activities give you quick access to 
additional buttons that may not fit on a main activity screen if you would like to keep your 
activities to a single screen without the need to scroll.  Any activity linked to using a 
“Background” link button will cause the main activity screen to “curl” up to the top of the 
screen, revealing the linked-to activity as if it were sitting behind the main activity.  While the 
background activity is displayed, no other activity can be linked to (so a background activity 
can’t have a background activity).  
 
To return to the main activity (un-curl the page down from the top of the screen), you can use 
the one-finger long press or swipe gestures, or you may add a “Link to activity” button that is 
configured for “[go back]”.  This is because the page curl animation also hides the navigation 
bar, so the standard “back” button is not available in this mode. 
 



Page 65 of 199 
Back to top 

Popover Links 
Link to Activity buttons may also be specified as "Popover" links (for the iPad only), in which 
case the linked-to activity will be displayed using the iPad's built-in popover functionality - 
which displays the activity in a temporary "window" over top of the currently displayed 
activity.  The popover will automatically size itself to the content found within the popover 
activity - sizing to the background image by default.  If no background image is specified for the 
popover activity, the resulting popover will size itself to the bounds of the buttons found within 
the activity, allowing you to create very small or very large popovers as desired.  If the linked-to 
activity is larger than will fit within the resulting popover, the activity will simply scroll within 
the popover. 
 
To enable this functionality, when creating a link button, simply select the "Popover" option to 
the right, and the activity selected for the link will be displayed within the popover when the 
link button is tapped.  To dismiss the popover, simply tap anywhere outside the popover, as all 
gestures on the current activity are suspended while the popover is visible on the screen. 
 

Custom transitions 
When you link to activities, you can specify custom transition animations to show the new 
activities on the screen.  Slide in from any direction, flip from any direction, curl up or down, 
zoom in, or dissolve (fade in). Custom transitions are defined within the Link buttons that link to 
the activity, and in addition to the type of transition, also allows setting the duration (speed) of 
the transition animation. Note that [go back] link buttons cannot have custom transitions, as 
exiting an activity simply reverses the transition used to link to the activity.  Also, activities 
loaded from the home activities screen will use the default sliding transition. 
 

Labels 
 

The "Label" button type isn't really a button at all.  A label just lets you place any text and/or 
image you'd like anywhere on your activity screen.  When creating a Label, you are given a text 
box in which you can enter the text to display on the label.  You can also leave the text box 
empty, and dynamically populate the text of the Label from button feedback or other script 
values.  Labels can be made any size, rotated, and given any background image, just like any 
other button. 
 
You may specify any label as a "Marquee" label when creating the label button.  This will cause 
the label to repeatedly scroll its text form right to left within the bounds of the label on the iOS 
device's screen.  (This option is not supported in the PC Remote feature on your server, or in 
WebRemotes). 
 

Web Views 
 



Page 66 of 199 
Back to top 

Web Views are not actually buttons, but rather an embedded view within your activity layout in 
which you can load a web page, images, raw HTML, or anything you can load over HTTP, that 
your device has access to.  Simply add a button of type "Web View" to any device, and set the 
URL you wish to load into the web view in the button configuration.  This differs from URL-type 
buttons in that the web page loads within TouchControl, rather than launching an external 
browser. 
 
You can also specify that the web view should automatically reload at a given interval.  When 
defining the web view "button", simply select the "Refresh" option, and set the refresh rate 
anywhere from 0 second to 600 seconds between refreshes.  A refresh rate of 0 (zero) will 
cause the web view to continually refresh with no pause in between.  You can also manually 
refresh a web view by double-tapping it on your device screen. 
 
By default, web views may be manually reloaded by double-tapping the web view on your iOS 
device screen.  To disable this functionality, simply un-check the "Double-tap to refresh" option 
when creating or editing the web view button.  
 
Web views may also be defined as "Interactive", which allows the links, buttons, and/or script 
in the contained web page to interact with TouchControl buttons which also exist in the activity 
layout.  This allows you to design at least a portion of your layout using HTML, CSS, XSL, etc., yet 
still retain use of TouchControl features not supported in HTML, such as custom TouchControl 
scripting, global and state variables, executing macros, link buttons, etc., along with executing 
all other primary button types.  Please see this page for more information on using interactive 
web views. 
 
You may also supply raw HTML to a web view (rather than a URL) if you wish, which will be 
loaded directly into the web view and displayed on your remote activity screen.  If the data 
provided to a web view button STARTS WITH the character "<", it will be treated as raw HTML, 
otherwise it will be treated as a URL.  The following is an example of using raw HTML to load an 
image and provide custom page styling: 
 

<body style="margin:0"> 
<img style="height:100%;width:100%" src="http://www.mysite.com/myimage.jpg" 
mce_src="http://www.mysite.com/myimage.jpg"> 
</body> 
 

You may also load an image into a web view from a button pack that you have supplied to 
TouchControl for button backgrounds.  To load an image from a button pack, simply use the 
button pack name and image file name as follows: 
 

<img src="images/mybuttonpack/myimagefile.png"/> 



Page 67 of 199 
Back to top 

 
To simplify the use of the web view button with the TouchControl Screen Grabber, there are 
several substitution strings that you may use within the web view URL or HTML that 
automatically map to your TouchControl Server's address, port, etc.  The substitution values 
available are: 
 
%touchcontrolserver/grabber% = resolves to your server's built-in HTTP server address, 
including the path to the screen grabber service 
%touchcontrolserver% = resolves to your server's built-in HTTP server address (including 
address & port) 
%touchcontrolhost% = resolves to your server's IP address 
%touchcontrolport% = resolves to your server's HTTP listener port 
 
Using these substitution values, TouchControl will automatically substitute the correct IP 
address (or hostname) and port number depending on whether you are in Wi-Fi or WAN 
coverage, and will automatically update as you roam between networks.  If you are currently 
displaying an activity that contains a web view using these values, you may need to back out of 
the activity and re-enter it to acquire the correct network-specific address. 
 

Dynamic Variable Substitution 
You may also use dynamic variable substitution (i.e. %varname%) in a Web View button's HTML 
or URL to dynamically pass data to Web Views, or web pages loaded within Web Views via 
script. 
 
When using raw HTML in a Web View, simply specify any _global or _local variable name (i.e. 
_global.myVar or _local.myVar) within percent signs (i.e. %myVar%) within the Web View's 
HTML, and that string will by replaced with the contents of the referenced variable when the 
Web View loads, and also any time the Web View is reloaded using "[#]" execution from 
another button's script. 
 
When specifying the URL of a web page in a Web View, you may pass data to the specified URL 
via a query string contained within the _global or _local variable.  For example, your URL could 
be specified like this: 
 
http://localhost/html/myWebPage?%myQueryString% 
 
The variable _global.myQueryString or _local.myQueryString should then contain a valid query 
string, such as: 
 
"item1=value1&item2=value2&item3=value3", etc. 
 

http://localhost/html/myWebPage?%25myQueryString%25


Page 68 of 199 
Back to top 

Your web page can then use its own script to process this query string. 
Note that using the "http://localhost/html" hostname and path for a web page triggers 
TouchControl to load the web page from the local device, as discussed here. 
 

Refreshing a Web View 
Web Views can also be refreshed, or their content updated programmatically via script.  Simply 
return the following from any script to update a web view: 
 
return '[#]mywebview'; 
This will simply refresh the current content in the web view. 
 
return '[#]mywebview==http://mynewurl.com'; 
This will load a new page (URL) in the web view. 
 
return '[#]mywebview==<body>New webview content</body>'; 
This will load new raw HTML into the web view. 
 

Alter a Web View's Identity 
By default, a web view on a given device will present the same identity to web pages as the 
mobile Safari browser running on that device.  That is, a web view within TouchControl running 
on an iPhone will present itself as an iPhone to web pages, and when on an iPad, will present 
itself as an iPad.  This is performed internally and automatically using the User-agent HTTP 
header.  However, if you would like to alter the identity that a web view presents to web pages 
loading within it, you can alter the User-agent header as needed.  This could be useful, for 
example, if you wish to present a Web View on an iPad that is sized like an iPhone, and load the 
iPhone-specific version of a web page or web site in the Web View.  (This assumes that the web 
site presents a different version of its web pages on an iPhone vs. an iPad - Twitter.com is an 
example of a web site that does this.)   
 
To accomplish this, all Web View buttons have a built-in UserAgent property.  To set it, right-
click on any Web View button, select "Properties...", and select the "UserAgent" from the Name 
drop-down list.  Then simply enter the new user agent value you would like to use in the Value 
field, and click the "+" button to add this property to the Web View button.  To remove the 
property, just highlight the property in the list and click the "-" button.  Or to change an existing 
value, highlight the property in the list, which will populate the Value field with the property’s 
value, change the value, and click the "+" button again to update the property with the new 
value.   
 



Page 69 of 199 
Back to top 

Web View Script 
Enter any desired JavaScript into the "Script" field, which will be executed when the web view 
button is referenced from another button's script via the "[#]" return string element.  See the 
Scripting topic for more information. 
 

URL buttons  
 

URL buttons can be used to launch the web browser on the iOS device to view a configured web 
page, or to launch other iOS apps on the device that expose a URL scheme.  Various sites, such 
as gadgethacks.com track URL schemes used by iOS apps. 
 

Feedback Client Buttons 
 

Feedback Client buttons allow TouchControl to connect to a TCP endpoint (IP address/port 
number) on your network and “monitor” that location for feedback messages. Data received 
over that persistent connection is then processed by the script provided within the button’s 
configuration. This allows TouchControl to react to changes to your environment in real time - 
as devices or services are updated by outside sources, rather than only after a command is sent 
from TouchControl. For example, a Feedback Client button could monitor the IP connection on 
an AV receiver, updating the volume status in real time as the volume knob is turned manually 
on the receiver itself. TouchControl can also send commands to the monitored device over that 
same persistent connection. Any feedback generated from those commands are processed by 
script attached to the button initiating the command, if it exists, or by the Feedback Client 
button’s script if no feedback script exists for the button executing the command. This allows 
you to override the default behavior of the Feedback Button’s script on a per-button basis, if 
you wish. To create and configure a Feedback Client button: 

1. Determine the device you wish to monitor/control. A Feedback Client button may 
connect to any type of device that exposes a TCP port that accepts incoming 
connections (typically defined as either EventTrigger or Global Caché in TouchControl 
Server). If you know that an entry already exists for that device you wish to monitor in 
Interface Manager within TouchControl Server settings, go to step 5. If no server/device 
entry exists, proceed with step 2 to create one. 

2. Choose Tools – Settings from the TouchControl Server menu, then click the “Interface 
Manager” button, and then click the “Add New” button to create a new interface entry. 

3. Select the type of entry to add. If you have no other need to send commands to this 
connection via other buttons, select “Feedback Client”, otherwise you may wish to use 
one of the other device types as described in step 1. 

https://ios.gadgethacks.com/news/always-updated-list-ios-app-url-scheme-names-0184033/


Page 70 of 199 
Back to top 

4. Give the entry a unique name, provide the devices IP address and Port (and WAN Port if 
needed to access via the Internet), and select TCP as the protocol. Click “Save” to save 
the entry. Click “Save” two more times to exit server settings. 

5. On the main TouchControl Server screen, select the device you would like to add the 
Feedback Client button to and click the “Add” button. 

6. Select the “Feedback Client” option in the “Auxiliary Buttons” section, give the button a 
unique name, and click the “Add” button to generate the new button. 

7. Highlight the new button in the buttons list and click “Set Data” (or double-click the 
button in the list) to open the button configuration panel. 

8. Select the device this button will connect to in the “Host” dropdown list and enter the 
desired feedback script in the provided input field. Click “Save” when you are done. 
Note for future reference that you may also access the Interface Manager settings from 
the button configuration panel by clicking the “Manage” button next to the “Host” 
dropdown list. 

9. The new button will display in the buttons list with a type of “CLIENT”. You may now 
drag and drop the new button to any activity layout. 

 

Feedback Client buttons attempt to connect to their defined remote host after the activity they 
are contained in has loaded/rendered on your device, including any Auto Exec on Load button 
you may have configured. You will be alerted to any connection errors at that time. Note that if 
the device you are connecting to only allows a single connection on the defined port at a time, 
TouchControl will acquire that connection, and any other remote sources attempting to 
connect to that same port on the remote device will likely fail. If this is undesirable, you may 
wish to use a standard EventTrigger button type instead (with no feedback monitoring). 
 
Feedback Client buttons are not supported on Apple Watch. 
 

Feedback Listener Buttons 
 

Feedback Listener buttons allow TouchControl to open a local UDP port on your iOS device that 
waits for UDP messages from any other device/service on the network. Data received on the 
UDP port is then processed by the script provided within the button’s configuration. This allows 
TouchControl to react to changes to your environment in real time - as devices or services are 
updated by outside sources, rather than only after a command is sent from TouchControl. For 
example, a Feedback Listener button could receive broadcast messages from an automation 
system indicating that a light has been turned on or off, or that the brightness level has 
changed, updating the light’s status in real time on your remote control screen. To create and 
configure a Feedback Client button: 



Page 71 of 199 
Back to top 

1. Choose Tools – Settings from the TouchControl Server menu, then click the “Interface 
Manager” button, and then click the “Add New” button to create a new server/device 
entry. 

2. Select the “Feedback Listener” type and give the entry a unique name. 

3. If your listener needs to join a multicast group, enter the multicast IP address in the 
supplied input field. This is optional, and by default (without the multicast address), the 
listener will automatically respond to any data broadcast on the specified port. 

4. Specify the port to which the UPD data will be broadcast. No WAN port needed. The 
protocol is automatically set to UDP. 

5. Click “Save” to save the entry. Click “Save” two more times to exit server settings. 

6. On the main TouchControl Server screen, select the device you would like to add the 
Feedback Listener button to and click the “Add” button. 

7. Select the “Feedback Listener” option in the “Auxiliary Buttons” section, give the button 
a unique name, and click the “Add” button to generate the new button. 

8. Highlight the new button in the buttons list and click “Set Data” (or double-click the 
button in the list) to open the button configuration panel. 

9. Select the “Feedback Listener” device created in step 1 above in the “Host” dropdown 
list, and enter the desired feedback script in the provided input field. Click “Save” when 
you are done. Note for future reference that you may also access the Interface Manager 
settings from the button configuration panel by clicking the “Manage” button next to 
the “Host” dropdown list. 

 

The new button will display in the buttons list with a type of “LISTEN”. You may now drag and 
drop the new button to any activity layout. 
 
Feedback Listener buttons will begin listening for UDP messages after the activity they are 
contained in has loaded/rendered on your device, including any AutoExec on Load button you 
may have configured. Note that TouchControl cannot send commands over a Feedback Listener 
connection, as it only receives and processes incoming UDP messages. Use an EventTrigger 
button with a Host that is defined with the UDP protocol to send UDP messages and 
broadcasts. 
 
Feedback Listener buttons are not supported on Apple Watch. 
 

Script Buttons 
 

Script buttons allow TouchControl to run a block of script, without connecting to a remote 
device or sending any command. Use this button type when you simply need to run script 



Page 72 of 199 
Back to top 

locally within TouchControl on your iOS device.  Script buttons may be used just like any other 
primary button type (i.e. added to macros, set as autoexec, given alternate text, etc.).   See the 
Scripting and Advanced Scripting topics for more information. 
 

Group Buttons 
 

Group buttons allow you to drag and drop other buttons on top of them, creating a collection 
of buttons that can be positioned, copied, pasted, and configured as a single entity.  To create a 
group button, simply add a new button to any device and select the "Group" option, provide a 
button name, and click "Save".  When dragging and dropping the group button onto a layout, 
you may select any background image (or hotspot/no image) for the group, just as with other 
button types.  Groups have a dashed border on the layout designer so you can easily tell them 
from other normal buttons.  Group buttons may not contain other groups, but they may 
contain any other type of button available in TouchControl, and only one instance of any group 
button may exist at any given time on an activity layout. 
 

TouchMotion 
Groups may also be moved around your iOS device's screen using your finger.  While designing 
your group button in TC Server, right-click on the group and select "TouchMotion", and then 
select the direction(s) you'd like to be able to move the group on your device's screen.  
Selecting either "Vertical" or "Horizontal" will allow movement in only the selected direction.  
Selecting both "Vertical" and "Horizontal" will allow movement in only one of those two 
directions at any given time - as long as your finger is touching the screen, and then movement 
in the opposite direction with a subsequent touch.  Selecting "All directions" will allow free 
movement anywhere on the screen.  You may also select "Constrained" to prevent the group 
from being moved off the edge of the layout.  Otherwise, the group may be moved off the 
layout to the extent allowed by the touch recognition.  When using "Vertical" and/or 
"Horizontal" modes, you may also "flick" the group.  A short, flicking motion with your finger 
will send the group sliding to the opposite edge of the activity, stopping when it reaches the 
opposite edge.  Note that TouchMotion movement is only possible when touching the group 
itself (the group's background).  If your group is completely covered with buttons, leaving none 
of the group itself showing, you will not be able to move the group with your finger. 
 
You may also specify if the group should be "pinned" to the edges of your layout.  This allows 
you to create interactions where the group that you are moving always snaps to the left, right, 
top or bottom of your layout when you move it.  The distance the group needs to be moved 
before it snaps to the opposite edge in the direction of the move is based on the size of both 
the group and the layout itself.  Moving just a little and then releasing will snap the group back 
to where it started.  Move it a little more and it will snap to the opposite edge.  If "Constrained" 
move is turned off, you can snap the group off the edge of your layout, leaving enough of the 
group visible to move it back into the layout.  The "Pinned" option is only available when you 



Page 73 of 199 
Back to top 

have selected horizontal and/or vertical movement (i.e. not available when "All directions" is 
selected). 
 
A group button can also have "TouchMotion Script", including pre-script, move script, and post-
script. 
 
TouchMotion "pre-script" runs immediately when you touch the group with your finger, before 
the move process has started.  
 
TouchMotion "move script" runs as the group is moved across the screen with your finger (or 
when the group ends its movement after a "flick").   
 
TouchMotion "post-script" runs when you remove your finger from the group after a move, or 
if the touch/move process is interrupted/cancelled by any other factor (such as dragging your 
finger off the screen, a pop-up message, etc.). 
 
Select a group button in the buttons list on the main TouchControl Server screen and click "Set 
Data" (or double-click on the button in the list) and enter your script in the fields provided.  
The following additional script variables are available to TouchMotion scripts: 

_moveDirection "left", "right", "up", "down", "all", or "none" 

_moveDelta  the distance the group was moved since the last run of the TouchMotion 
script 

_groupX  the screen pixel coordinate of the left edge of the group 

_groupY  the screen pixel coordinate of the top edge of the group 

_groupW  the width of the group in pixels 

_groupH  the height of the group in pixels 

_groupTouchX  the horizontal pixel location within the group that you touched to move it 

_groupTouchY  the vertical pixel location within the group that you touched to move it 

• A group configured to move in "All directions" will always return a _moveDirection of 
"all" if it was moved in any direction 

• A _moveDirection of "none" is returned if a group is tapped but not moved 

• Together _groupX and _groupY make up the point on the screen representing the upper 
left corner of the group 

• Together _groupW and _groupH make up the size of the group 



Page 74 of 199 
Back to top 

• Together _groupTouchX and _GroupTouchY make up the point in the group you 
touched 

 
Note that if the script that you enter here generates excessive processing demands (such as 
executing other buttons that send commands over the network that expect feedback, etc.), it 
could affect the smoothness of movement of the group on the screen. 
Here are a couple of videos showing both group buttons and animations... 
Groups & animations - iPad 
Groups & animations - iPhone 
 

Download these sample activities from the download page.   
 

Group Edit Mode 
While designing an activity layout that contains groups, pressing and holding the "G" key ("g" 
for "group") will temporarily hide the contents of all groups on the layout, displaying only the 
group's outline, background and group name. This is useful if your group is completely covered 
by one or more buttons, leaving no background available to access the group's right-click menu, 
or to move/resize the group itself with the mouse. Releasing the "G" key will re-display the 
contents of all groups. If holding the "G" key down proves problematic on your computer, or 
you prefer not to have to hold the "G" key for group edit mode, enable the "Toggle Group Edit" 
option in server setting to switch the "G" key behavior to a toggle, turning on group edit mode 
with one press of the "G" key, and turning it off with a subsequent press of the "G" key. 
 

Hide In Designer 
Groups may also be hidden in the designer during normal design and configuration by right-
clicking on a group and selecting "Hide In Designer". This is useful if you have groups that will sit 
over other groups on your layout during normal use (for example if a group will be initially 
hidden, and then shown as a popup over your main layout), but you'd like to have access to the 
underlying buttons for design & configuration purposes. Note that this setting only affects the 
groups visibility while designing in the server, and has no affect at run time on the device. The 
normal "enabled" setting still affects run-time visibility, or any alpha (transparency) value 
applied via script. Once a group is hidden in the designer, using the "group edit" mode 
described above will temporarily display the hidden group, allowing you to move/resize the 
group, and/or providing access to the group's right-click menu to configure the group or un-
hide it in the designer. 
 

Templates 
Any group may also be saved as a template, allowing you to easily create other identical groups 
in a single step.  To create a group template, add a group to any layout, add the desired buttons 
to the group, configure the group and all contained buttons as desired, and then right-click on 
the group and select "Save Group Template".  This will prompt you to provide a template name, 

https://www.youtube.com/watch?v=jObQzUAK-SU&feature=youtu.be
https://www.youtube.com/watch?v=pzY07NCj2qM&feature=youtu.be


Page 75 of 199 
Back to top 

and then click "OK" to save a template of the selected group.  The template then becomes 
available at a global level to create new groups within your configuration.  To update a group 
template, simply make the desired changes to a group and again select "Save Group Template" 
from the pop-up menu, and then select the existing template name from the drop-down list 
and click "OK".  The template with that name will now be updated to the current configuration 
of the group you saved it from. 
 
To create a new group from an existing template, simply drag a group button from the buttons 
list, drop it on your layout, and when you are presented with the list of images to select for the 
group, the first list of images in the image selector panel will be "Group Templates". Switch to 
this list to view thumbnails of all the existing group templates, and select the desired template.  
The new group will be populated with the buttons from the template, and configured 
accordingly.  The new group will initially be located at the coordinates of the original group 
used to create the template (useful, for example, if you want a group of buttons to show up at 
exactly the same location on every activity layout), but can then be moved to any location you 
wish.  By default, when creating a group from a template, the new group will be "linked" to the 
template, and any future updates to the template will be propagated to any groups "linked" to 
it.  This also means that the contents of new groups created from templates are initially 
"locked", and cannot be modified directly.  If you'd like to "un-link" a group from its template, 
just right-click on the group and de-select the "Linked To Template" option.  Once un-linked, 
the group's contents may be updated, and changes to the group's original template will not 
affect this groups appearance or configuration.  If you'd subsequently like to re-link the group 
to its original template, just right-click and re-select the "Linked To Template" option, save, 
close, and re-open the layout, and the group will once again mirror the template.  Note that a 
group may only be linked to the template that it was originally created from.  If you wish for a 
group to use a different template, simply delete the group and re-create it from the new 
template. 
 
You may view all existing templates in your configuration by selecting "Template Manager” in 
server settings.  A panel will appear showing all existing group names.  Double click on a group 
name to view a thumbnail image of the group, or select a template name and click the "Delete" 
button to remote the template from your configuration. 
 

Text Fields 
 

Text Field buttons render as multi-line, scrolling text boxes, allowing you to enter/interact with 
the contained text via the device keyboard, and scroll with your finger.  And since they scroll, 
they can contain more text that would fit on a standard button/label, or even on your device's 
screen.  Text fields can be used for such purposes as maintaining a log of messages sent 
to/from devices, generating blocks of text to send to destinations on the network, or any other 
requirement for capturing and/or displaying large amounts of unstructured text. 



Page 76 of 199 
Back to top 

 
There are various ways to interact with text fields.  The device keyboard is likely the primary 
way, automatically popping up when you tap inside the text field to give it focus, or using 
special device commands enabled via Command buttons (discussed later).  You may also 
disable a text field so that the keyboard does not appear when touching the text field, but still 
allowing you to scroll the contents with your finger, and you may add text to, and retrieve text 
from a text field via script, with script helper functions (discussed later).   
 
Text fields can have most of the same properties as normal buttons, including text color, text 
size, background color (when using a hot-spot for the button image), and a background image.  
Note that for text fields, any specified background image will be tiled behind the text, and will 
scroll with the text.  The default text color is black, and the default background color (when 
using a hot-spot) is white.  You can set the initial text contained in a text field by populating the 
alternate text field when creating/defining the button.  Note that text fields cannot have HTML 
text, as other buttons can.  If you need a large amount of scrollable HTML, use a web view 
button instead.  A text field's initial text can also be set using a property value, just as other 
buttons, by specifying _property.propertyName in the alternate text field. 
 
The following script helper functions are available to interact with text field buttons via script: 

_getText('myTextField')   - returns the text contained in a text field 

_setText('myTextField','new text')  - sets the text contained in a text field (replacing 
any existing text) 

_appendText('myTextField','new text') - appends the new text to the end of the existing 
text in the field 

_prependText('myTextField','new text') - prepends the new text to the beginning of the 
existing text in the          
 field 

_appendLine('myTextField','new text') - appends the new text plus a line feed to the end 
of the existing text 

_prependLine('myTextField','new text') - prepends the new text plus a line feed to the 
beginning of the existing text 

_scrollTop('myTextField')   - automatically scroll to the top of the text field 

_scrollBottom('myTextField')  - automatically scroll to the bottom of the text field 

_setDisabled('myTextField',true/false) - enables/disables keyboard interaction with the 
text field (while maintaining scrolling capability) 

 



Page 77 of 199 
Back to top 

Note that when using _setText, _appendText or _appendLine, the text field will automatically 
scroll to the end of the new text.  When using _prependText or _prependLine, the text field will 
automatically scroll to the beginning of the new text.  The _append/_prepend helper functions 
may also be used with any other button types as well. 
 
The following special device commands can be used with Command buttons to manipulate the 
iOS keyboard:  
 
{keyboard show:myTextField} - shows the keyboard, placing cursor focus in the specified 

text field 
{keyboard hide}   - hides the keyboard 
 
Note that tapping inside a text field will automatically show the keyboard, and tapping outside 
the text field on the activity background will automatically hide the keyboard. 
 
By default, a text field will present the default iOS keyboard when activated.  All text fields have 
a built-in property named "KeyboardType", allowing you to change the presented keyboard for 
a specific text field.  Simply set the KeyboardType property to the value "Numpad" to display 
the numeric keypad for the specified text field. 
 
By default, a text field will present a keyboard with a "Return" key, which will add a line feed 
into the text field when pressed.  All text fields have a built-in property named 
"ReturnKeyType", allowing you to change the name and action of the return key as follows: 

• Set the ReturnKeyType property to the value "Done" to present a "Done" key, which will 
dismiss the keyboard when pressed, as well as run any specified return key script (see 
below). 

• Set the ReturnKeyType property to one of the values "Go", "Next", or "Send" to present 
a key with the same name, which will run any specified return key script when pressed 
(see below), but not dismiss the keyboard.  

 
Custom script can also be specified which will run when the return key is pressed (either with 
the default "Return" key, or any of the above-mentioned custom return key types).  To specify 
script to run when pressing the return key, all text field buttons have a built-in property named 
"ReturnKeyScript".  Simply set the value of this property to the custom script you would like to 
run when pressing the return key.  If executing more than a single line of script, it is suggested 
to add the script to a function within a script library (Tools - Settings - Script Manager), and 
simply call the function from the ReturnKeyScript property. 
 



Page 78 of 199 
Back to top 

By default, spell check is turned off for text field buttons.  To enable spell check, all text field 
buttons have included a built-in property named "SpellCheck".  Simply set this property to the 
value "On" to enable spell check for the specified text field. 
 
Note that any of the above-mentioned properties can also be set at runtime via script.  For 
example, to turn spell check off, simply execute the script: 
 

_setProperty('myTextField', 'SpellCheck', 'Off') 
 

Sample activities are available on the download page which demonstrates several of the 
features of text field buttons.   

• One activity demonstrates using a text field to send character keypresses to a Roku 
device using the Roku’s keypress HTTP API.  This feature can be integrated into any 
activity, and can be used to send text to any device that includes a similar API. 
 

• Another activity creates a chat client using two text fields, a UDP broadcast EventTrigger 
button, a Feedback Listener, and various other buttons using script/commands 
mentioned above.  To use the chat client sample activity, two devices running 
TouchControl must be on the same internal LAN network to broadcast and receive the 
UDP chat messages.  The features found in this sample could also be used to send 
simple alert messages to other devices running TouchControl on your network.  Use 
your imagination, and enjoy! 

 

http://www.touchapptech.com/#!download/c12ar


Page 79 of 199 
Back to top 

Designing Layouts  
 

Once you have some buttons created and configured, you are ready to layout your 
TouchControl screen(s). Click the “Show Layout” button to open the layout designer panel. This 
is your canvas for designing your universal remote screens. iPhone/iPod layouts are initially 
sized to match the displayable area on an iPhone, and iPad layouts are initially sized to match 
the displayable area on an iPad in portrait mode. When initially opening the design panel for an 
iPad layout in portrait mode, a button will be available to the left of the layout panel that will 
allow you to switch the layout to landscape mode. The button will then toggle to allow you to 
switch back to portrait mode. Once you add a background image to the layout (see below), 
however, the layout will be locked to the dimensions of the background image. 
 
Within TouchControl Server settings you will find an option to "Un-dock designer window". This 
setting allows the server layout designer window to open as a separate window on your 
desktop (the default is to expand the main TouchControl window to encompass the designer 
window). When this is enabled, the layout design window will open each time where it was 
located the last time it was closed. Only one layout designer window may be open concurrently.  
Click the "?" in the title bar of the designer (to the left of the "Save" button) to open the 
"QuickHelp" window, providing you with help for keystroke behaviors, key/mouse 
combinations and many other advanced designer features. The help window can be positioned 
in any location on your screen, will remain on top, and will always re-open in its previous 
location.  Note that you must have internet access for the "?" to appear and help content to 
load. 
 

Background Image 

• If you wish, you may add a background image to your layout by clicking the 
Background button (Windows server), or right-clicking on the layout background and 
selecting “Background Image” from the popup menu (Mac server). A few 
backgrounds have been included in the initial install for you to try. If you'd like to 
add your own background, please see the Backgrounds And Button Packs page on 
this site for more information.  
 

• Note that you may add a background of any size. If the background is larger than the 
default iPhone screen size of 320x480, or the default iPad screen size of 1024x768, 
the design layout panel will expand to show the entire background.  
 

o On the server settings screen you will find an option to "Scale layouts in 
designer." With this option enabled, if the background image is too large to 
fit on the dimensions of your computer screen at your given resolution, the 



Page 80 of 199 
Back to top 

image will be scaled down to fit on your screen. This is a design time feature 
only, and the image will be at full resolution on the iOS device display. If this 
option is not enabled, the layout designer will expand to the dimensions of 
your screen and present scroll bars to allow access to the entire layout. 
 

• To add a new background image to TouchControl Server, simply select "Tools -> 
Import Background Image..." from the menu, and select the image from your 
computer when prompted. This will add the image to the background collection and 
make it immediately available for use in your layouts.  
 

• If you already have an activity open in the designer layout panel when you import a 
background image, and the new background does not show up in the list when 
attempting to select a background image, you may need to click the "Refresh" 
button just above the background image list to force the new background image to 
appear in the list.  
 

• You may also dynamically set the background image used for an activity at run time 
by supplying a script variable that holds the name of the background image to use. 
To do this, right-click on a blank spot on your activity background in the server 
designer and select "Background Variable...". This will present you with an input field 
in which you may enter the name of a script variable which will hold the background 
image file name at run time. This can be any variable you choose, as it will be your 
responsibility to ensure the variable is set via script you provide. When the activity is 
rendered on your iOS device, it will look for the referenced file within the 
backgrounds.zip file (so the background image must already exist in the 
backgrounds.zip archive) and use that image to render the activity. This will occur 
before the activity is drawn on the iOS device screen, so there will be no visual 
replacement of images noticeable. You should still add a background image to your 
activity in the designer as usual, which will be used if the variable does not contain a 
valid image file name when the activity is opened on the device. 
 
The background variable may also contain a color, allowing you to set the color of 
the activity background when no background image is being used.  This can 
sometimes be easier than creating a solid color background image just to get a 
specific color for your activity background.  To set a color, populate your background 
variable with either a hex color value (i.e. ‘#f2f2f2’), or the name of a built-in color 
preceded with ‘#’ (i.e. ‘#black’, ‘#blue’, ‘#cyan’, etc.).  TouchControl’s built-in color 
names are ‘black’, ‘white’, ‘blue’, ‘red’, ‘green’, ‘yellow’, ‘orange’, ‘purple’, ‘brown’, 
‘cyan’, ‘magenta’, ‘gray’, ‘lightgray’, ‘darkgray’, and ‘clear’.  This allows you to quickly 
change the activity background color by simply updating the background variable’s 
value.   



Page 81 of 199 
Back to top 

Alternately, if you simply want to set a color for the background and don’t need to 
change it dynamically later, you can just enter the #color directly into the 
“Background Variable” field (e.g. #black, #blue, #f2f2f2, etc.), bypassing the need to 
create and maintain a separate variable. 

Adding Buttons 
To add a button to the layout, highlight the desired device in the Devices In This Activity list, and 
click and drag the desired button from the Buttons list to the layout canvas and drop it on the 
layout panel.  On the Mac server, you may also highlight the button you wish to add in the list, 
and click the “Add button to layout” button at the bottom of the server window, and then click 
the location on the layout panel where you’d like to add the button.  When you add the button 
to the panel, you will be presented with a list of available images for the button. Button images 
are grouped into "Button Packs" which are selected via the drop-down list at the top of the 
image list. Simply click on the desired image and it will be added to the layout panel where you 
can then drag it into the desired position and re-size as needed. Note that the first image 
shown in each button pack is actually a "hot spot", which is a transparent button that can be 
positioned over any portion of the background, can be given a solid background color and/or 
rounded corners if desired, and can be adjusted to the desired size. 
 

Button Packs: Some default button images are included with the TouchControl Server 
installation, but the fun starts when you add your own images for your device 
buttons. You do this by packaging your images into "button packs" and supplying 
them to the TouchControl program. Please see the Backgrounds and Button 
Packs topic for more information. 

▪ If you have recently added a new button pack and the new pack does not 
show up in the list when attempting to select a button image, you may 
need to click the "Refresh" button just above the button image list to 
force the new button pack to appear in the list. 

Selecting buttons 

To configure a button that has been dropped on a layout, select it by simply clicking it with your 
mouse.   
 

Multi-select mode: You may also select and configure multiple buttons simultaneously 
by holding the CTRL key while clicking on the buttons you wish to select.  This is 
referred to as multi-select mode.  Each multi-selected button will highlight with a 
magenta border to indicate it is in multi-select mode.  Simply click on a blank 
spot on your background to deselect the selected group of buttons, or CTRL-click 
again on any multi-selected button to remove it from the multi-select group.   
 



Page 82 of 199 
Back to top 

Drag-select: In addition to using CTRL-click to select multiple buttons, you may also click 
on any blank spot on your layout background and start dragging. The background 
will turn black while dragging so you can see the drag rectangle outline 
regardless of what background image you may be using. Buttons will be selected 
as soon as the drag rectangle touches them (i.e. buttons don't have to be fully 
contained in the drag rectangle to get selected). To drag-select multiple buttons 
inside a group, hold the "s" key (for "select") before starting the drag, and 
release the "s" key when finished drag-selecting buttons (this is because a group 
is itself a button, and a normal click-and-drag with the mouse will simply move 
the group on the screen). 
 

Selecting group buttons: Note that you may not select both a group button and any of its 
contained buttons at the same time. If you select a group button (using either 
CTRL-click or the drag-select method), any previously selected buttons within 
that group will be de-selected. Or if you select one or more buttons within a 
group (using either of those same methods), if the containing group was 
previously selected, it will be de-selected. 

 

Cloning buttons 
When dragging and dropping buttons onto your layouts, you also have the option to pick an 
existing button on your layout to "clone" with the new button. On Windows, simply hold down 
the Ctrl key while adding a button to enter "clone mode", then click on the button you'd like to 
clone.  On macOS, when you drop a button on an activity, it will ask whether you wish to add 
the button, or clone another button. The new button will take on the cloned button's size, 
image, icon, and text attributes (but will retain the original button's text, dropped location, and 
other internal button properties).  
 

Copy & paste 
If you wish to duplicate any buttons that have been added to a layout, select one or more 
buttons in the layout, right-click and select "Copy", then right click on your layout background 
and click "Paste", and the new buttons will be created at the same location as the copied 
buttons. Paste buttons into the same layout, or into any other layout you wish.  
 

Resizing buttons 
After a button has been dropped onto a design layout and a background image has been 
selected, you may move the button to any location within the layout using the mouse or arrow 
keyboard keys, and/or resize the button by dragging the sides or corners of the button image. 
You may also multi-select multiple buttons and then “grab” any of the selected buttons with 
your mouse and drag the entire group as a set. You can also “grab” the edge or corner of any of 
the selected buttons, and move the mouse to resize all the selected buttons together.  
 



Page 83 of 199 
Back to top 

Fast resizing: (Windows server only) Normally, clicking and dragging the side or corner 
of a button or hotspot will increase or decrease its size by one pixel at a time. 
With large iPad layouts, it can take quite some time to resize a large button or 
gesture pad. To resize buttons more quickly, press and hold the "Alt" key while 
dragging the side or corner of a button to force the button to resize by 20 pixels 
at a time. Release the "Alt" key to return to 1-pixel resize, press it again for 20-
pixel resize, etc. 
 

Proportional resizing: Normally when resizing a button or hotspot, it will resize only in 
the direction you are dragging, losing its original proportions. To resize a button 
and retain its original proportions, hold the "Shift" key while dragging any 
straight side of a button or hotspot to resize in two dimensions. In the Mac 
Server, you may also proportionally resize by dragging button corners.  In the 
Windows server, the "Shift" key has no effect when resizing by dragging the 
corners of a button/hotspot. 

 

Replacing buttons 
If you'd like to replace the button associated with an image on a layout after you've already 
dropped a button onto the layout background, simply drag a new button and drop it on the old 
one. You will be asked if you'd like to replace the old button with the new one, and if so, just 
answer "Yes". You may not drop another button onto a Label or a Gesture Pad, however. To 
replace those types, you must delete them and add a new button in their place. 
 

Designer transparency 
When adding buttons to a layout in TouchControl Server for Windows, button images using a 
transparent background are transparent to the layout background, however they are not 
transparent to any buttons beneath them. Therefore, if you overlay any button with another 
button, it will look as if the top button is blocking the view of the button under it. However, this 
is only an anomaly in the way the server program (Windows) displays the images, and the result 
on the iOS device will be truly transparent buttons displaying any other buttons beneath them.  
Note that the Mac server provides true transparency and therefore does not have this 
limitation. 
 

Rotating buttons 
Buttons can be rotated by holding CTRL+SHIFT while clicking on one or more buttons. This will 
display the button rotation dialog, which will allow you to freely rotate any selected buttons 
from -180 to +180 degrees using either the slider control, or by entering the rotation degrees 
directly into the field provided. Click on a blank spot on your layout background to exit rotation 
mode. 
 



Page 84 of 199 
Back to top 

Configuring Buttons  

Right-click menu: After a button has been added to the layout, you may right-click on 
the button to display a pop-up menu of numerous configuration options for 
the button. Feel free to play around with the options available to make your 
button look and act as you desire. You may also test and delete buttons from 
the layout using this pop-up menu.  
 

Enabling/disabling buttons: The first option on the right-click menu will be 
“Enabled,” which by default will be turned on (checked).  An enabled button 
is visible on the activity when viewed on the client device.  Disabling a button 
by un-checking this option will essentially hide the button when the activity is 
viewed on the client device.  This allows you to add buttons to a layout for 
various uses that do not require interaction by the user.  This includes 
buttons that will be programmatically executed by other buttons via script, 
buttons used as auto-exec on load/resume/exit, buttons that you want to 
initially hide and then show to the user later via script, etc.   

Button Images: After adding a button to a layout and selecting its image, you may 
use the Image menu option to select a new image for the button, or to set 
various other image options: 

Pressed Image: Each button may have an alternate image defined for the 
button's "pressed" state. This image will display when you tap on or 
hold the button on the device screen. Right-click on a button in a 
layout and select Image -> Pressed Image -> Select... to pick the 
alternate pressed-state image (the pressed image must be from the 
same button pack as the button's primary image). Or, select the 
"Auto" option which will briefly invert the primary background image 
when the button is tapped. Note that the "Auto" option will also 
invert any text or icon that is embedded in the background image, so 
use carefully. If no pressed image selection is made, the standard 
momentary shift of the primary image on the screen will be the 
default. NOTE: The "Auto" option only available on devices with iOS 
4.0 or greater. 

Icons: You may also add an "icon" image to any button, which is an additional 
image placed on top of the main button background image. Once a 
button has been dropped on a layout and the primary button image 
has been chosen, right-click on the button in the layout and select 



Page 85 of 199 
Back to top 

"Image - Icon...". This will display a list of icons, grouped by "icon 
pack", and selecting an image from the list will place that image in the 
center of the button on the layout. Several common icon images have 
been provided (e.g. play, pause, stop, ff, rew, back, etc.), in several 
different colors/textures.  

To add your own custom icons, locate the “buttonicons.zip” file 
within the “images” folder under your “TouchControl” data folder 
(under “My Documents” unless you moved it during installation), and 
either add icon images to existing folders within that zip file, or add 
new folders to the .zip file and populate them with the desired icons. 
Each folder within the buttonicons.zip file becomes an “icon pack”. 

Reset size: Select this option to return selected buttons to their original size 
based on their background images. 

Set background color: For hot-spot buttons (those without a background 
image), you can set the background color of the button to one of 
several different pre-defined colors as well as round the button 
corners for an enhanced visual effect.  Clicking the “Custom color” 
option will open the visual color picker, allowing you to select any 
color in the palette.  Optionally you may hover the mouse over the 
“Custom…” option (Windows server), and an entry field will display, 
allowing you to enter any HEX color code (e.g. #1A2B3C or #1A3).  
This option works for multi-selected buttons as well.  A button’s 
background color can also be set dynamically via script using the 
_setBackgroundColor() helper function (see the Advanced Scripting 
topic). 

Disable animation: When a button is pressed on the device screen, by default 
the button image will momentarily shift down and to the right, and 
then immediately back into place. If you don't want this animation to 
occur, you can turn off this behavior by selecting "Image - Disable 
Animation" in the button's right-click menu. You may wish to do this if 
you are creating your own animation via feedback scripting, for 
example. 

Button text: Use the “Text” menu option to alter the display of text on a button. 

Show/hide text: By default, a button’s text is visible on the button for 
button’s originally added with a background image, and not visible for 



Page 86 of 199 
Back to top 

buttons originally added as a hot-spot.  Use the Show text and Hide 
text options to change the button’s text visibility. 

Text size: By default, a button is added to the layout with the pre-defined 
“medium” sized text.  A button’s text size can be altered using this 
option to various other pre-defined sizes.  A button’s text can be 
changed to virtually any size at run time using the _setTextSize() 
script helper function (see the Advanced Scripting topic). 

Text color: By default, a button is added to the layout with black text.  The 
text color can be changed with this option to one of several pre-
defined colors, or to virtually any color using the “Custom color” 
option.  Clicking the “Custom color” option will open the visual color 
picker, allowing you to select any color in the palette.  Optionally you 
may hover the mouse over the “Custom…” option, and an entry field 
will display, allowing you to enter any HEX color code (e.g. #1A2B3C 
or #1A3).  This option works for multi-selected buttons as well.  A 
button’s text can also be changed to any color at run time using the 
_setTextColor() script helper function (see the Advanced Scripting 
topic). 

Text font and alignment: Special built-in button properties are provided for all 
button types that display text that allow you to adjust the font, size 
and alignment of the text displayed for the button.  See Built-In 
Button Properties for more information. 

TouchTips: Buttons may also display a "TouchTip" on the iOS device screen 
when touching or swiping across the button using this option.  
TouchTips will enable the equivalent of a "tool tip" or "bubble" above 
your finger when pressing and holding on a button on your iOS device 
screen, displaying the button's text within the bubble.  Release the 
button to execute the command, or slide your finger off the button to 
cancel execution (when the tip disappears).  Or, simply slide your 
finger over multiple TouchTip-enabled buttons to display their tips as 
you slide, then release when you find the button you want to execute 
(while its tip is showing).  This is only available for buttons that have 
their text hidden (since the button's text is what displays in the 
bubble), and is not available for repeating buttons, press & release 
buttons, gesture pads, sliders, spinners, or web views - so just 
standard, single-tap buttons.  This is useful if you have several 
buttons that only display images/icons, and which may be difficult for 



Page 87 of 199 
Back to top 

a user to identify (such as a page of channel favorites).  Simply sliding 
your finger across the buttons displays the relevant text, without 
taking up the extra room on the layout to permanently display the 
text.  

Size & Location: (Windows server only) For an additional method to move/re-size 
buttons, this option opens a panel which will allow you to enter/select the 
left, top, width, and height of the selected button. This is also available for 
multiple selected buttons. This can be useful when making precise layout 
changes rather than trying to make many small size/position changes with 
the mouse.  
 

Delay touch: (Windows server only) Setting button delay allows you to click multiple 
buttons on the iPhone/iPad screen before the commands are actually sent to 
the device. This is useful for buttons such as channel numbers, allowing you 
time to touch all numbers in a given channel, and then have the entire 
channel signal sent to the device (TV, DVR, etc.) at once, effectively creating 
a dynamic macro. This should help for those devices that automatically 
change channels after a short amount of time when sent a channel number, 
for example.  
 

Auto Exec: A button may be set to automatically execute on load, on appear, on 
resume, or on exit of an activity.  When you right-click on a button in your 
layout, use the Auto Exec option to set this functionality.  Only one button 
may be selected at a time for on load, on appear, on resume, or on exit, but 
you may have one of each on a layout, and a single button may be selected 
for any/all of them.  If you'd like to select a button for auto execution that 
does not display on your layout, simply add the button, disable it, and drag it 
off into a corner of the layout out of the way.   
 
Be aware of the difference between the on load and on appear button 
behavior.  On load buttons execute only once when an activity first loads.  If 
you link to another activity and then return back to the first activity, an on-
load button on that first activity will not re-execute, as that activity still exists 
and does not re-load when returning.  On appear buttons, however, do 
execute each time an activity appears.  This includes immediately after the 
initial load, and any time you link/navigate away and then link/return back to 
the activity.  So, you should place any command/script that you only want to 
execute once in the lifetime of an activity in an on-load button, and any 



Page 88 of 199 
Back to top 

command/script that you want to execute each time an activity is shown in 
an on appear button.  Note that on resume buttons only execute when 
TouchControl is returned to the foreground after being sent to the 
background, or the device goes to sleep and then resumes.  In those cases, 
whatever activity is currently being shown will execute its on resume button. 

Layout: Several layout options are available for single or multi-selected buttons: 

Bring to front/Send to back: Use these options to arrange the layers of 
overlapping buttons on your layout. 

Center horizontally/Center vertically: Use these options to center buttons 
within their container (either within the activity or within a group). 

Align: When multiple buttons are selected together, you will have the option to align 
those multi-selected buttons to each other.  Select the “Tops”, “Bottoms”, 
“Lefts” or “Rights” option to align all selected buttons to the desired edge of 
the button that you right-clicked on to select this menu option.  

Stationary: Enabling this option for a button allows it to remain stationary (or 
"locked") on the device screen while the rest of the activity scrolls 
beneath/behind it.  This is, of course, only useful on activities that scroll, as 
all buttons are in effect stationary if the activity does not scroll either 
horizontally or vertically.  

Propagate: (Windows server only) You may also right-click on any button in the 
layout designer and select "Propagate", and you will be asked to select 
another button (or buttons) to "propagate" the currently selected button's 
visual properties to. This is similar to the "clone button" option above, but 
where clone is used to style a single, new button when you drop it on your 
layout, the "Propagate" option allows you to propagate visual properties 
from button to button after they have already been added to the layout. So, 
if you decide you want to change the image on several buttons on your 
layout to make them all the same, all you need to do is set the image on one 
button, then propagate the style of that button to all the other buttons. 
Simply multi-select as many buttons as you wish, then pick one of the 
selected buttons when prompted. 

Properties: You may set custom properties for any button.  Please see the Advanced 
Scripting topic for more information. 
 



Page 89 of 199 
Back to top 

Design-Time Features 

While designing your remote interface, right-click on a blank spot on your remote background 
to be presented with a menu which will allow you to:  

Snap to grid: This will cause the buttons and hotspots you add to your remote 
layout to snap to a grid as you drag them around.  The grid size is set in 
server settings as outlined in the server setup topic.  Use this to help you 
line up buttons more easily.  You can still use the arrow keys for more 
granular movement when this option is enabled, and you can turn this 
option on and off as needed while designing a remote screen.  

Undo all changes: (Windows server only) This will undo all current changes since 
the last time the layout was saved. 

Find: (Mac server only) On the Mac server, the layout designer right-click menu 
includes a “Find” option that will allow you to quickly locate any auto-
exec buttons (on load, appear, resume, exit).  If one of these buttons is 
found on the layout, it will highlight and flash.  

Undo button: (Mac server only) On the Mac server, the layout designer includes 
an “Undo” button in the upper right.  Any changes made to button size or 
location can be un-done using the undo button.  If multiple buttons are 
moved or resized using multi-select, those changes are un-done 
simultaneously as well.  Other button property changes made using the 
button popup menu are not un-done using the undo button.  

Button border color: This will allow you to alter the highlight color of the borders 
(outlines) around the buttons on your remote layout. This is useful for 
dark backgrounds or backgrounds with colors that blend with the button 
borders making it difficult to see the outlines for precise placement of 
buttons. Please note: These borders are only visible while designing the 
remote layouts, and not visible on the device display. 
 
NOTE: If you'd like to get a better idea of what your layout will look like 
without the outlines in the layout designer, just press and hold the "O" 
key (that's "o" for "outline"), and the outlines will temporarily disappear. 
Release the "O" key to bring them back. 

Background variable:  This option allows you to specify a script variable that 
contains the name of the activity background image or color value that 
you’d like to use.  This allows you to dynamically set or change the 



Page 90 of 199 
Back to top 

activity background at runtime via script by changing the contents of the 
variable you specify here. 

While designing your layouts, if the designer panel is open, each time you select a 
button in the buttons list, the corresponding button will be highlighted within the layout 
designer, if it is found there. The button on the layout will be temporarily brought to the 
top (if it is partially or fully hidden behind other buttons), its border will be outlined with 
the cyan color, and it will momentarily flash to highlight its location. When you either 
select a different button in the buttons list, or click any other button in the layout, or 
click the layout background, the highlighted button will be returned to its original 
location (depth) and its border will return to the normal layout button border color. 

Alternately, when you click on a button that has been added (dragged/dropped) to an 
activity layout, the corresponding button will be selected in the “Buttons for selected 
device” list, and the containing device will be automatically selected in the “Devices in 
this activity” list. 
 
Quick drag (Windows server only) 
When moving or re-sizing a button, especially a group with many contained buttons, 
screen re-draw can degrade the performance of the move/re-size action. To help with 
this, simply hold the "D" key (that’s "d" for "drag") while dragging for "quick drag" 
mode, and the button/group contents will blank out, leaving just the outline and any 
background image, showing the new position/size as you drag. Releasing the "d" key 
while still dragging will re-display the button contents, or releasing the mouse button 
will re-display the contents when done. "Quick drag" will also help smooth out the 
process when simply moving several buttons at the same time. So, after you multi-select 
some buttons (either using CTRL-click, or the new drag-select method), simply hold the 
"D" key before you start dragging (or while you're dragging if you forget), and the 
movement of the buttons on the screen will smooth out.  This feature is not needed on 
Mac server. 
 

Designer Hotkeys (Windows server only) 
You may use the following hotkeys while working with buttons/layouts in the server 
designer: 
 
Ctrl-a (select all) 
Ctrl-c (copy) 
Ctrl-x (cut) 
Ctrl-v (paste) 
Ctrl-s (save layout) 



Page 91 of 199 
Back to top 

 

Saving Layouts 
Once you have the layout looking the way you want, you can save the layout to the 
configuration by clicking the Save Layout button at the top of the layout panel, or pressing Ctrl-
s. You may also click the "Hide Layout" button, which will prompt you to save the layout if any 
un-saved changes have been made. 



Page 92 of 199 
Back to top 

Interface Manager  
 

Interface Manager is available within TouchControl Server settings to manage the network 
settings for the remote interfaces (e.g. IP enabled devices, servers such as EventGhost, and 
devices such as Global Caché iTach & GC-100) that you can control with TouchControl. All 
remote interfaces that you wish to control must be added via this feature before they will be 
available to use elsewhere in the app. 
  
To open Interface Manager, select "Settings" from the "Tools" menu, and click the "Interface 
Manager" button to open the "Interfaces Hosts" configuration panel. This feature can also be 
accessed from the button configuration panels using the “Manage” button found there. 
 
Once the “Interface Hosts” panel is open, to add a new device or server: 
 

1. Click the "Add New" button. The "New Interface Host Settings" panel will display.  

2. Select the type of interface you wish to add. 

3. Give the interface a unique name. This will be the name that you will reference this 
interface by in all other locations in TouchControl Server.  

4. Enter the “IP Address” for the interface.  

a. For the Feedback Listener device type, the IP address field will become a 
"Multicast Group" field. If your listener needs to join a multicast group, enter the 
IP address of the group in this field. If not joining a multicast group, simply leave 
this field blank (for Feedback Listeners).  

b. You can also dynamically set the IP address of a connection at run-time via script. 
To do this, set the IP address of the connection to: %myVarName% (where 
"myVarName" is a local or global variable set using 
_local.myVarName='192.168.1.120'; or _global.myVarName='192.168.1.120'; for 
example). When TouchControl attempts to connect using this interface, it will 
use the value of the variable as the connection's IP address, allowing you to 
change the IP address at run-time, if desired. Note that when dynamically 
changing a connection's IP address, any existing connection to the old device 
must be terminated so that a new connection can be established to the new 
device at the new address, so make sure you use execute a button (an auto-exec 
on load button would come in handy for this) that specifies the Interface 
Manager entry as its “Host”, and returns “[!]” from its pre- or post-script to kill 
the connection to the previous device. Then the first time a button is tapped to 
send a command to the device, it will use the new IP address specified by the 
global variable. 



Page 93 of 199 
Back to top 

5. Enter or select the “Port” used by this interface. For example, all Global Caché devices 
use port 4998 for IR control.  

6. Enter or select the "WAN Port" used by this interface. This will be the "external" port 
that you have configured in your network to allow access from the Internet. This allows 
you to open one port in your router, and forward the requests to a different internal 
port (the "Port" specified for this device). This would be needed, for example, because 
all GC devices use port 4998 to listen for requests, so different ports would need to be 
forwarded from your router to port 4998 at different IP addresses if you have more than 
one GC device that you wish to access from the internet. If you don't plan to access this 
interface from the internet, the actual port number entered here is irrelevant.  

7. For HTTP Request interfaces, you may specify basic authentication (ID & password) 
settings within the interface settings.  This allows you to specify authentication for all 
buttons that use a given interface in one place.  Authentication settings may also be 
specified for each individual HTTP Request button by setting the HTTPAuth property 
separately on each button, however, specifying authentication settings here streamlines 
the process when all buttons that use a given HTTP Request interface need the same 
authentication settings.  You can also use the HTTPAuth property on any given button to 
override the authentication setting specified in that button's interface host.  When 
setting authentication within the interface host, you may also specify only a password 
(leave the ID field blank) for those devices/services that require only a password with no 
ID. 

8. If you have devices which only allow a single connection, such as the Global Caché GC-
100 adapters, but you have multiple iOS devices running TouchControl, you can "proxy" 
all requests for a given host from multiple iOS devices through TouchControl Server, 
effectively making TC Server that single connection, while providing your devices full 
two-way communication with the GC-100 (or whatever device you are using). To enable 
this, simply check the "Proxy internal requests" option when configuring the Interface 
Manager entry for the device you wish to control. This setting is available for 
EventTrigger, Global Caché, and iRTrans interface definitions. 

9. If your router does not support forwarding one external port number to a different 
internal port number (as described above), and you have multiple devices that use the 
same port, you can use TouchControl Server as a "proxy" to receive the device 
commands and forward them on to the target device, and return any feedback received 
to TouchControl on your device. This is especially useful if you have multiple Global 
Caché IR or contact closure devices which all use port 4998 (and cannot be changed). 
Simply check the "Proxy external requests" option beneath the port assignments when 
setting the port values to enable this feature. This setting is available for EventTrigger, 
Global Caché, and iRTrans interface definitions.  



Page 94 of 199 
Back to top 

10. Select the protocol, TCP or UDP, to use when communicating with the remote host by 
selecting the appropriate radio button. This option is only available for EventTrigger 
server/device types. Other server/device types will automatically set the protocol as 
needed.  

11. You may also set a built-in "heartbeat" for any TCP connection. A heartbeat simply 
sends some small amount of data over the connection at a pre-defined interval. If you 
are having problems with a particular device dropping the connection after some period 
of inactivity, or if a device is designed to terminate the connection after some period of 
inactivity, adding a heartbeat can help keep the connection "alive" and avoid delays or 
errors when TouchControl attempts to use a connection that has been broken or 
dropped on the other end. To enable the heartbeat, when creating or updating an entry 
in Interface Manager, simply check the "Heartbeat" option at the bottom of the panel, 
provide an interval for the heartbeat to send its data, and provide some small amount of 
data to be sent at each interval. Normally something as simple as a carriage return (\r) is 
enough to keep the connection alive, or your device may require more or different data. 
It would be suggested to use the minimal amount of data necessary, and make sure that 
the data you send does not trigger unwanted actions in the remote device, or generate 
unwanted feedback to TouchControl.  

12. You may also enable the "Bypass" option to prevent the iOS device from attempting to 
connect to the remote host when using buttons associated with this interface, and 
optionally supply static feedback for buttons that require feedback. This is useful for 
testing purposes when the remote host may not be available. Remember to turn this 
feature off when you are ready to actually use the remote host, or deploy the 
configuration to a user/customer.  

13. Click "Save" to save this information and return to the server/device list panel. 

 

Click the check box to the right of an interface in the list to set it as the default for that type. 
When adding new buttons, the default interface for that button type will initially be selected, 
and can be changed by simply selecting a different host when configuring the button action (if 
more than one interface for that button type has been added to the configuration). 
 
To edit an existing interface in the list, right-click an entry and click "Edit". 
 
To duplicate an existing interface, right-click an entry and select "Copy". 
 
To delete an existing interface, right-click an entry and select "Delete". 
 



Page 95 of 199 
Back to top 

Any time you add an interface on your network that you wish to control using TouchControl 
(e.g. Global Caché, IP devices, EventGhost, HTTP servers, etc.), simply return to the "Interface 
Manager" and add the new host before adding buttons to control it. 



Page 96 of 199 
Back to top 

Template Manager  
 

In TouchControl Server settings, click the "Template Manager" button to open the Template 
Manager panel, which will display all currently configured group templates. Double click on any 
template name to display a thumbnail image of the group as it was configured for the template. 
Highlighting a template name and clicking the "Delete" button will remove the selected 
template from your configuration (but not any groups created from that template). When 
opening an activity layout that contains a group linked to a removed template, you will be given 
the opportunity to un-link the group(s) from the template. You may also re-create a template 
with the same name as a removed template, and any groups that were linked to the old 
template will be automatically linked to the new template. 



Page 97 of 199 
Back to top 

Server Tools  
 

PC Remote Control (Windows server only) 
Using only the free TouchControl server software, you can turn your PC into a universal remote 
control using the "Remote Control" option on the TouchControl Server menu. This will launch 
your remote layouts directly onto your PC desktop. Please see this page for more information.  
 

Listening (Windows server only) 
When TouchControl Server starts, it will automatically start listening for connections from the 
device app. If, for any reason, you wish to disable the server program from listening while it is 
running, select the Tools > Stop Listening menu option to disable listening. Then click Tools > 
Start Listening when you want to start listening for request once again. 
 

Import/Export  

You can import and export remote layout settings using the Import Configuration and Export 
Configuration options from the Tools menu. You can use these functions to copy remote 
layouts from one computer to another, to share with someone else, or to back up your 
configuration and restore later. 

• To export/backup your entire configuration, choose Tools > Export Configuration > 
Entire Configuration from the menu. This will automatically save the entire 
configuration to a file in your TouchControl Server data directory (a popup message will 
let you know exactly where it was saved, including the file name). 

• To export only one activity to a file, choose Tools > Export Configuration > Activities, and 
you will be presented with a dialog allowing you to select the activity you wish to 
export. You also have the option of including the activity background image, any 
referenced button packs, and any referenced external script files in the export zip file. 

• To import previously exported data (either an entire configuration or a single activity), 
choose Tools > Import Configuration..., and you will be prompted to select the import 
file from your hard drive. Once you've selected the file and provided the requested 
information on the import panel, the configuration will be added to your setup. You also 
have the option of importing any background image and/or buttons packs which were 
included in the export file.  

Reload Configuration 

Use the Reload Configuration menu option to force TouchControl Server to reload its config 
from the XML files on disk. This would be useful if you wanted to swap out the XML 
configuration files (TouchControlConfig.xml and TouchControlMasterConfig.xml), and then load 
the new configuration from those files without stopping and restarting the server.  
 

http://www.touchapptech.com/#!pcremote/pmqnr


Page 98 of 199 
Back to top 

Migrate Activity Buttons (Windows server only) 
Have you ever needed to swap out the buttons from one device on and activity for the same 
buttons from another device? For example, if you want to change the buttons on your "Watch 
TV" activity from controlling a cable box to controlling a satellite receiver, or vice versa? Or 
maybe wanted to change the control of a device from USB-UIRT to Global Caché control, but 
keep the same buttons and layout? That process can now be much easier with the "Migrate 
Activity Buttons" option on the server Tools menu. All you need to do is create your new device 
(most likely by making a copy of the existing device), then updating the buttons with the new 
commands as needed, and then select Tools - Migrate Activity Buttons... from the server menu. 
This will display a dialog that will allow you to select the activity or activities that you'd like to 
update, pick the device you are migrating from, and the device you are migrating to, and click 
"Migrate". You may also specify that you'd like to update all macros in your configuration to 
replace any references to buttons from the old device with references to the same buttons in 
the new device. This can be a major time saver, rather than having to go through and update 
macros manually (think about all of your favorite channel macros!). Give it a try the next time 
you're making these types of updates to your configuration. 
 

Arrange Locations & Activities (Windows server only) 
The default order for both locations and activities in both the server interface and TouchControl 
on the device is alphabetical. If you would like to arrange the locations/activities in a different 
order of your choosing, the "Tools -> Arrange Locations & Activities" menu option will present 
an interface which allows you to arrange the locations, and the activities within each location, 
into a custom ordering. Simply select a location or activity in the list and use the arrow 
up/down buttons to move the selected item into place, and then click the "Save" button to save 
the new arrangement. Then refresh your configuration to your device (using the refresh button 
in the upper-right nav bar of the main activities screen on the client) to update the 
arrangement there. Please note that locations are arranged relative to other locations, and 
activities are arranged relative to other activities within the same location. Therefore, you 
cannot inter-mingle activities from multiple locations within the resulting arrangement. 
 

Import Global Caché Buttons From iLearn (Windows server only) 
Available from the TouchControl Server Tools menu, this feature allows you to use files created 
by Global Caché's iLearn program to import IR codes into TouchControl Server in bulk. First 
select the TouchControl Server device that you’d like to import the buttons into from the 
“Available Devices” list, then select “Tools – Import GC Buttons From iLearn” from the 
TouchControl Server menu. After you choose the iLearn import file from your computer’s file 
system, you will be presented with a panel that will allow you to select the “Host” GC device to 
configure for all buttons (from the GC devices available in Interface Manager), and also the 
module and connector on that GC device that you’d like to configure for each button. Click 
“Import” and all codes in the file will become buttons in TouchControl Server, immediately 



Page 99 of 199 
Back to top 

available for you to add to your activity layouts. Note that the names of the newly created 
buttons are derived from the names provided for each code within the iLearn import file. 
 

Import Global Caché Buttons From Database 

Available from the TouchControl Server Tools menu, this feature allows you to access Global 
Caché's online IR code database ("ControlTower") to import ready-to-use IR codes. When 
selecting this option, you will be presented with a panel which will allow you to search through 
the more than 138,000 code sets freely available in the online database, in an easy-to-use 
interface. First select the TouchControl device that you wish to add the newly created buttons 
to, then select the brand of the device you wish to control, and then select the device type and 
then model name to see a list of available functions for the selected device. You can then select 
all or a subset of those functions to automatically import the related IR codes into 
TouchControl. Set the "Host", "Module", and "Connector" settings on this panel to the proper 
settings for the device you wish to control with these codes. You may also select the "Dynamic" 
option to use script variables to dynamically specify the module and connector at run-time (see 
the Global Caché button documentation for more information). The import process will then 
create a new button in TouchControl for each function you select, automatically populating the 
buttons with the IR codes from the online database, as well as the host, module, and connector 
that you specified.  
 
The newly imported buttons will, by default, be named the same as the functions shown for 
each IR code. Prior to import, click the "Normalize" button on this panel to see a list of optional 
adjustments that can be made to the button names during the import process. You can strip 
certain strings from the resulting button names, and/or make certain string replacements. 
Browse the list of functions shown and see if any of the normalizations look appealing to you. 
They are completely optional, and any selected normalizations occur in the order shown. Once 
the import is complete, click the "Done" button and then select the TouchControl device that 
you chose for the import to see the newly created buttons. Note that if you import buttons into 
a device that contains existing buttons, any new buttons generated during the import that 
would result in duplicate button names are skipped, and you are alerted at the end of the 
import process as to which buttons were skipped (not imported). 
 

Find Unused Buttons (Windows server only) 
The "Find Unused Buttons" feature will display a list of all buttons that are not currently in use 
in your configuration. This feature presents two options for finding unused buttons: "direct" 
and "recursive". The direct option will find any buttons that are not used directly in an activity, 
and which are not referenced directly in a composite button (i.e. a macro, gesture pad, slider or 
spinner). The recursive option finds those same unused buttons, but in addition, it will also 
report buttons as unused if they are included in a composite button, but that composite button 
is not included in an activity or in another composite button. No buttons are removed/deleted 

http://www.touchapptech.com/globalcachebuttons.htm
http://www.touchapptech.com/globalcachebuttons.htm


Page 100 of 199 
Back to top 

using this feature - you are simply presented with a list of unused buttons that you can use as 
you wish. 
 

Checking for New TouchControl Server Version (Windows server only)   
You can use the Check for New Version option on the Help menu to force TouchControl Server 
to check to see if a new version of the software is available on the web site (requires internet 
connection). This check is also done by default each time the program is started if you have 
enabled that option in settings. If a new version is available, you will be prompted to 
automatically navigate to the download page on this site via your default browser to download 
the new version. IMPORTANT: If you'd rather not automatically perform the check for a new 
version at startup (for example if you run TouchControl Server in a lights-out environment and 
do not wish to be prompted at startup in the event a new version is available), you can turn off 
automatic version checking on the settings page (Tools > Settings). In this case you should 
periodically perform the version check manually, either by using the Help menu option, or by 
visiting this site. 
 

TouchControl Server configuration backup/recovery (Windows server only) 
Each time a change is made to your configuration (adding/removing elements, configuring 
activities/buttons, modifying layouts, etc.), a snapshot of your configuration is saved to the 
"backup" subdirectory under the TouchControl data directory on your computer (typically "\my 
documents\TouchControl"). In the event that your TouchControl Server configuration becomes 
corrupt or unusable, you may recover from the backup by stopping TouchControl Server and 
copying the two files located in the backup directory into your TouchControl data directory, 
replacing the files located there with the same names. 



Page 101 of 199 
Back to top 

Backgrounds and Button Packs  
 

Custom background and button images are one feature that really set TouchControl apart from 
other iPhone remote apps. You can supply TouchControl with any images you'd like to use on 
your remote screens. 
 

Background Images 
Background images are stored in the backgrounds.zip file located in your TouchControl images 
directory (default is My Documents/TouchControl/images). A few sample backgrounds are 
included with the TouchControl installation. To add your own background image(s) (or images 
you've downloaded from the Download page), simply add the image(s) to the backgrounds.zip 
file using your favorite ZIP archive program (such as WinZip, 7zip, WinRar, Windows 
compressed folders etc.). After you have added the image(s), restart TouchControl Server, and 
the new image(s) should be available when you click the Background button above the layout 
panel.  
 
To add a new background image to TouchControl Server, simply select "Tools -> Import 
Background Image..." from the TouchControl Server menu and select the image from your 
computer when prompted. This will add the image to the background collection and make it 
immediately available for use in your layouts. If you download background images from the 
Download page, simply uncompress the zip file to your computer and use the import option to 
import the background(s) into TouchControl Server. 
 
You may also upload images from your device directly into the backgrounds collection. Find the 
option in Settings in the TouchControl app. 
 
Background images should be at least 320px wide by 420px high to fill the available iPhone 
display (320px by 480px if using full-screen activities on the iPhone/iPod). Images may be 
larger, in which case the iPhone display will scroll to allow access to the entire background. The 
layout design panel, however, will expand to show the entire background to make it easier to 
layout your remote screen(s). Note that if the background image is too large to fit on your 
screen at your given resolution, the image will be scaled down to fit within your screen 
dimensions. This is only a design-time feature, and the background image will be at full 
resolution on the iPhone screen.  
 
Providing an image that is wider than 320px or taller than 420px is a great way to give you extra 
space to layout buttons by taking advantage of the iPhone's excellent scrolling motion. Just put 
less frequently used buttons at the right or bottom, and swipe your finger to scroll them into 
view when needed. 
 

http://www.touchapptech.com/#!download/c12ar


Page 102 of 199 
Back to top 

You may also add high-res background images for use on devices with the high-res retina 
display. Following Apple's iPhone image naming standard, images that include "@2x" at the end 
of the filename (i.e. mybackground@2x.png) will be treated as high-res, and will be sized to half 
the dimensions of the raw image, effectively giving it twice the pixel density of normal images. 
If you add two images with the same name, but one has the additional "@2x" added to the 
filename, the iOS devices will automatically use the high-res image on devices with a retina 
display and the lower-res image on all other devices. This allows you to build one layout and 
automatically support devices with different screen resolutions. 
 
When adding your own button images to a layout, you'll probably want to keep the background 
image fairly simple so that it doesn't distract from the buttons themselves. However, using the 
button hot spot, you can use elements in the background image as buttons themselves (for 
example, a picture of your device's remote control), which can make for fun and interesting 
remote control screens. So play around and have fun! 
 

Button Packs 
Button images are provided to the TouchControl program in "button packs", which are simply 
ZIP files with a specific name, location, and file structure. Two sample button packs are included 
with the TouchControl installation. To create and add your own button packs, follow these 
simple steps: 

• Create your buttons using your favorite image design program. Images are preferred in 
the .png format and should use background transparency for best results. Create a 
separate image file for each button. It is suggested that button images be no smaller 
than 30x30px to be usable on the iPhone screen. 60x60px is a nice size to hit with your 
finger. 

• You can alternately obtain button images from any source available to you. Images can 
be in the .png or .jpg format, but, again, the .png format is preferred for best results as 
they support transparency. http://www.remotecentral.com contains files with hundreds 
of great remote control button images. Just please make sure you honor all copyrights 
and license agreements when obtaining images from any other location. 

• If creating your own images, add your images to a directory on your computer named 
the same as the desired name of your button pack. 

• Each button may also have an alternate image defined for the button's "pressed" state, 
which will display when you tap on or hold the button on your device screen. Pressed-
state images must reside in the same button pack as the primary image for the button. 
See the Designing Layouts topic for more info on adding pressed-state images.  

• You may also add high-res button images for use on devices with the high-res retina 
display. Following Apple's iPhone image naming standard, images that include "@2x" at 
the end of the filename (i.e. mybutton@2x.png) will be treated as high-res, and will be 

http://www.remotecentral.com/


Page 103 of 199 
Back to top 

sized to half the dimensions of the raw image, effectively giving it twice the pixel density 
of normal images. If you add two images with the same name, but one has the 
additional "@2x" added to the filename, the iOS devices will automatically use the high-
res image on devices with a retina display and the lower-res image on all other devices. 
This allows you to build one layout and automatically support devices with different 
screen resolutions. Note that the high-res ("@2x") images must reside in the same 
button pack as the lower-res versions. 

• Create a ZIP file containing the directory which in turn contains your button images. 
That is, the ZIP file should contain one directory which in turn contains multiple images. 
The ZIP file must be named the same as the directory it contains, but with the .zip 
extension. Take a look at the sample button pack files in the images directory (see 
below) as an example. 

• Place the ZIP file in the TouchControl images directory (default is My 
Documents/TouchControl/images). 

• If downloading the button packs from this site, they will already be in the correct 
format, so simply download them directly to your TouchControl images directory. 

• Open the settings page by selecting Tools > Settings. Click the Add button next to the 
Button Packs list, select the button packs you'd like to use, and click OK. Then click Save 
at the bottom of the settings screen. 

• Stop and restart the TouchControl Server program, and your images should be available 
the next time you add a button to a remote layout screen. 

Download! 
Check the Download page for newly available backgrounds and button packs. New images will 
be posted periodically.  
Create! 
Find out where you can get more buttons on the FAQ page... 
Share! 
If you have a background and/or button pack that you are particularly proud of and you'd like 
to share it, feel free to send it to me and I'll post it on the Download page on this site so that 
others can take advantage of it. In the future I hope to allow TouchControl users to upload their 
own content to the site, including complete activity configurations with remote IR codes, 
layout, images, etc., so watch for that! 

http://www.touchapptech.com/#!download/c12ar
http://www.touchapptech.com/#!faq/fqji7
mailto:support@touchapptech.com
http://www.touchapptech.com/#!download/c12ar


Page 104 of 199 
Back to top 

Scripting  
 

Scripting is used within TouchControl to process feedback from your devices, as well as 
augment and/or alter the normal/defined processing performed by the buttons on your remote 
interfaces. TouchControl scripting uses standard JavaScript, and is supplied by you during the 
design process within TouchControl Server. Scripting is not required to use TouchControl, but 
can make your control interfaces infinitely smarter and more powerful. The primary type of 
script available within TouchControl is feedback script and is available for any button that 
supports feedback: Command, AutoHotKey, EventTrigger, Global Caché, and HTTP Request. 
Other advanced scripting features are discussed here. 
 

Editing Script 
Button script can be edited directly within the button configuration panels, and also within a 
larger editing window that is available when pressing the "Edit" button above any script field. In 
addition, when an external script editor has been specified within Script Manager, clicking the 
"Edit" button above any script field will launch the external editor, populating it with any script 
found in the script field. When the script is then saved within the external editor, the script 
within the button configuration panel will be automatically updated with the saved script. The 
script can be re-edited and re-saved as long as both the button configuration panel and the 
external editor remain open. If the button config panel is closed, any script visible in the 
external editor can be discarded, as it is no longer linked to the button script. Re-clicking the 
"Edit" button above the script field will once-again load the button script into the external 
editor and re-establish the link. 
 

Feedback Script 
Feedback script takes the data returned from the device you are controlling and does 
something useful with it, such as updating the remote interface with text and/or images, 
executing another button/command, switching to another remote control screen, updating a 
variable for later use, etc. The majority of the JavaScript required for feedback script is simple 
string parsing - taking the data returned from the device, parsing and analyzing it to determine 
the status of the device that returned it, and then building a new string (referred to here as the 
"return string") which tells TouchControl what to do next.  
 
The data returned from the device you are controlling is handed to your feedback script in a 
variable named _feedback, which your JavaScript can read just like any other JS variable. This 
feedback will contain all raw data received, including carriage return and/or linefeed 
characters. 

NOTE: The "Show script errors" option under "Script Settings" in TouchControl settings 
on your iOS device is turned on by default. This will display a prompt message for each 



Page 105 of 199 
Back to top 

script error found, with varying levels of information depending on the type of error 
encountered. Without this option enabled, script errors will still occur, but you will not 
be notified of them. 

The Return String 

• Note: The script return string feature was introduced with the first iteration of scripting 
in the TouchControl app.  It continues to work and can be an easy and effective solution 
for basic needs.  However, button script variables and the _get… and _set… script helper 
functions that were introduced as more advanced scripting capabilities were added to 
the app can be a more flexible and powerful scripting technique.  See Button Script 
Variables and Helper Functions in the Advanced Scripting topic for more information. 

The TouchControl script “return string” is a defined, formatted string that you return from your 
script which TouchControl can analyze to determine what actions to take next. The return string 
can contain several different pieces of information and must be created in a specific format for 
TouchControl to use it. That format consists of the following elements: 

Button text/image/icon:  
When updating a button's text, image, and/or icon, this must be the first element supplied 
in the return string*. This element has the following format: 

buttonName^buttonText[@]buttonImage~buttonIcon 

Each of the segments within this element may be supplied individually or together: 

Update button text only:  
return 'buttonName^buttonText';  

Update button image only:  
return 'buttonName[@]buttonImage';  

Update button icon only:  
return 'buttonName[@]~buttonIcon';  

Update button text and image:  
return 'buttonName^buttonText[@]buttonImage';  

Update button image and icon:  
return 'buttonName[@]buttonImage~buttonIcon'; 



Page 106 of 199 
Back to top 

You may update multiple buttons with the same return string using the "|" (pipe) 
character as follows: 

return 
'buttonName^buttonText[@]buttonImage|buttonName[@]~buttonIcon|etc...'; 

When used within Apple Watch activities, the return string may also include an 
element that generates an alert notification on the watch as follows: 
 
[alert:My Alert Title^My alert text] 
 
This element may be located anywhere within the return string, and the return 
string may contain only one alert element. 

Execute a button  
When executing another button, this element must either follow any text/image/icon 
element (above), or be the first element supplied in the return string* (if no 
text/image/icon element exists). This element has the following format:  

[#]buttonName or [#]deviceName^buttonName 

When the button name is unique within the activity layout, you need only supply 
its name. If you have buttons from multiple devices with the same name found 
in the activity layout, you should also supply the button's device name, as 
buttons must be unique within a device. 

You may also execute multiple buttons by returning multiple execution elements 
together, as follows: 

[#]buttonName1[#]buttonName2[#]buttonName3[#]etc... 
 
Some button types can be updated using the execution return string element. 
The content of a web view, the value of a sliders, and the selected element of a 
spinner can be set by returning: 
 
[#]mywebview==http://someNewUrl.com 
or 
[#]mywebview==<body>some new html </body> 
 
[#]myslider==100 (i.e. any valid value for the slider) 
 



Page 107 of 199 
Back to top 

[#]myspinner==A spinner entry (i.e. one of the spinner's entries) 
 
Referencing spinner, slider and web view buttons in this manner will also result 
in the button's (the spinner/slider/web view) script being executed – but does 
not execute the button configured to be executed by a slider or spinner. 

Additional timer button flags 
The above method of executing a button, when used with a timer button, will start 
the timer button if it's stopped, or stop the timer button if it's running, effectively 
acting as a toggle. However, if you simply want to ensure that a timer is running 
(even if it's already running), or ensure that a timer is stopped (even if it's already 
stopped), or extend a currently running timer with a new interval, you can specify 
additional timer action flags in the script return string to perform these functions as 
follows.   

• Note that any flags below that contain “!” will always result in the button being 
immediately executed, whereas without the “!”, the button may or may not be 
executed depending on the current state of the timer. 

      return '[#]{>}myTimerButton'; 

• This will start a timer (and immediately execute the button) if it is not started, or leave 
it running at its current interval if it's already running (not immediately executing the 
button). 
 

      return '[#]{>>}myTimerButton'; 
• This will start a timer (and immediately execute the button) if it is not started, or 
extend it with a new, fresh interval if it's already running (not immediately executing the 
button). 
 

      return '[#]{<}myTimerButton'; 
• This will stop a timer if it's running, or leave it stopped if it's not running. 
 

      return '[#]{!}myTimerButton'; 
• This will immediately execute a timer button, and leave a timer running at its current 
interval if it’s already running, or leave it stopped if it’s not running - basically executing 
the button as a normal button, bypassing any timer processing. 
 

      return '[#]{>!}myTimerButton'; 
• This will immediately execute a timer button, and start a timer if it's not started, or 
leave it running at its current interval if it’s already running. 
 



Page 108 of 199 
Back to top 

      return '[#]{>>!}myTimerButton'; 
• This will immediately execute a timer button, and start a timer if it's not started, or 
extend it with a new, fresh interval if it's already running. 
 

      return '[#]{<!}myTimerButton'; 
• This will immediately execute a timer button, and stop a timer if it's running, or leave it 
stopped if it's not running. 
 

Set a local variable 
To set local variable for use in a later script, this element must either follow any 
text/image/icon element and any button execution element, or be the first element 
supplied in the return string* (if no text/image/icon or button execution elements exist). 
These variables are local to the currently active (foreground) activity only, and may be 
accessed from buttons on that activity. This element has the following format: 

[&&]varName^varValue 

or, to set multiple variables... 

[&&]varName1^varValue1|varName2^varValue2|varName3^varValue3|etc... 

The name/value pair is added to the local variable collection (the "_local" object) 
and may be later used within script as follows: 

_local.varName 

example: 

if _local.varName == '0' { 
return 'myButton^Off'; 

} else { 
return 'myButton^On': 

} 

You may also use local variables within any button command (not just within a 
button's feedback script). To use the value from any local variable in a command, 
insert %varName% (where varName is any local variable name) in the button's 
command at the position you'd like to substitute the given global variable's 
value. This allows the feedback from one button to play a direct role in the 
command sent by a subsequent button.  



Page 109 of 199 
Back to top 

Use %0x:varName% if you wish to automatically convert the value of 
varName to a Hex value.  Note that the value of varName must be 
convertible to a decimal (number) value. 

Note that if there is a _global variable (see below) with the same name as a 
_local variable, when using that variable for %varname% substitution, the 
_local variable will take priority. This allows you to override a _global variable 
with a _local one in an individual activity if you wish. 

Set a global variable 
To set global variable for use in a later script, this element must either follow any 
text/image/icon element and any button execution element and any local variable 
element, or be the first element supplied in the return string* (if no text/image/icon or 
button execution elements exist). These variables are global to the entire TouchControl 
app, and may be accessed from buttons on any activity. This element has the following 
format: 

[&]varName^varValue 

or, to set multiple variables... 

[&]varName1^varValue1|varName2^varValue2|varName3^varValue3|etc... 

The name/value pair is added to the global variable collection (the "_global" 
variable) and may be later used within script as follows: 

_global.varName 

example:  

if _global.varName == '0' { 
return 'myButton^Off'; 

} else { 
return 'myButton^On': 

} 

You may also use global variables within any button command (not just within a 
button's feedback script). To use the value from any global variable in a 
command, insert %varName% (where varName is any global variable name) in 
the button's command at the position you'd like to substitute the given global 
variable's value. This allows the feedback from one button to play a direct role in 



Page 110 of 199 
Back to top 

the command sent by a subsequent button. 

Use %0x:varName% if you wish to automatically convert the value of 
varName to a Hex value.  Note that the value of varName must be 
convertible to a decimal (number) value. 

Note that if there is a _local variable (see above) with the same name as a 
_global variable, when using that variable for %varname% substitution, the 
_local variable will take priority. This allows you to override a _global variable 
with a _local one in an individual activity if you wish. 

Cancellation elements 
Various actions/processes in TouchControl can be cancelled via a script's return value. 
These elements may reside anywhere within the return string, regardless of the 
existence of any of the previously discussed elements. Therefore, although the above 
elements indicate they must be the first ones found in the return string, these 
cancellation elements may precede any of them and still maintain a valid return string. 

[!] - this element will terminate the network connection with the device being 
controlled by the button as soon as the script exits. Subsequent buttons 
controlling that device will need to establish a new connection.  

[*] - this element will cancel any further execution of a button when returned from 
the button's pre-script. Any defined command, feedback script, or post script 
for that button will be ignored.  

[**] - this element will cancel a timer button when returned from the timer button's 
own feedback script. If the executing button is not a timer button, this 
element does nothing.  

[***] - this element will cancel the execution of a macro when returned from the 
feedback script of a button contained within the macro. Any buttons found 
after the button returning this element within the macro will not execute. If 
the executing button is not part of a macro, this element does nothing. 

Examples 
Here are a few examples of valid return strings.  
return 'myLabel^myText[@]buttonpack/buttonfile.png[#]deviceName^buttonName'; 

This return string updates the text on the "myLabel" button to the string "myText", 
updates the background image of that same button to the image 



Page 111 of 199 
Back to top 

"buttonpack/buttonfile.png", and executes the "deviceName^buttonName" button 
found on your layout.  

return 'myButton[@]buttonpack/buttonfile.png~buttonicons/myicons/iconfile.png'; 
This return string updates the background image of the "myButton" button to the image 
"buttonpack/buttonfile.png", and updates that same button's icon to 
"buttonicons/myicons/iconfile.png". 

return '[#]buttonName'; 
This return string only executes the button "buttonName" found on your layout. 

return '[&]myVar^myValue[**]'; 
This return string sets the global variable _global.myVar to the value 'myValue', and 
cancels the timer button (assuming the button executing this script is a timer button). 

return '[***][#]buttonName'; 
This return string cancels the currently running macro and executes the button 
"buttonName" found on your layout. 

 

Full Script Examples 
This simple script is used with a “Power On” button for a Denon receiver. The button sends a 
“PW?” command to check the power-on status of the receiver, which returns the actual power 
status of the device as feedback. If the power is off (“PWSTANDBY”), it executes the “pwon” 
button (another TouchControl button which is configured to send the actual power on 
command), otherwise it does nothing. The “pwon” button must reside within the activity 
layout, and may be added to the activity with a small, empty hotspot so that it is not visible on 
the screen, and disabled if desired. This script also tells TouchControl to release the socket 
when it has completed. 
 
if (_feedback == 'PWSTANDBY') { 

return '[#]pwon[!]'; 
} 
 
This script is used on the Vol+, Vol-, Mute On, and Mute Off buttons. The commands for each of 
those buttons returns feedback including the volume/mute status of the device. A label is 
updated in each case showing either the mute status, or the current master volume of the 
device, and updates the label image based on the mute status. A global variable named 
"denonMute" is also created when updating the mute status for use later or by other activities 
as needed. This script also uses various standard JavaScript string parsing methods (substr, 
indexOf, length, etc.). 



Page 112 of 199 
Back to top 

if (_feedback.substr(0, 4) == 'MUON') { 
return 'VolumeLabel^Mute On[@]plastic/redcircle_40x40.png[&]denonMute^On'; 

} else { 
if (_feedback.substr(0, 5) == 'MUOFF') { 

return 'VolumeLabel^Mute Off[@]plastic/greencircle_40x40.png[&]denonMute^Off'; 
} else { 

var fbString = _feedback.substr(2, _feedback.indexOf('MVMAX') - 2); 
if (fbString.length <= 2) { 

return 'VolumeLabel^' + fbString; 
} else { 

return 'VolumeLabel^' + fbString.substr(0, 2) + '.' + fbString.substr(2); 
} 

} 
} 
 

Feedback Flags 

Using feedback scripting, you may also specify a duration of time to wait for feedback before 
executing your feedback script, a specific terminator to look for in your feedback, or a minimum 
length of data that must be returned before the iOS device stops waiting for feedback and 
continues. Note that these elements are not considered part of your actual feedback script, and 
are processed and removed from the script before it is handed to the JavaScript engine for 
further processing. 
 
To instruct TouchControl to wait for a given amount of time for feedback before executing your 
script, simply add "[wait]duration;" to the beginning of your feedback script. NOTE that the 
format of this is important. It must begin with "[wait]" (without the quotes), and must end with 
a semicolon, and it may reside immediately before or after either of the following two elements 
([term] or [len]), if they exist, but otherwise must be at the beginning of your supplied feedback 
script. The value for duration must be any valid integer or float value indicating the number of 
seconds to wait for feedback before proceeding (e.g. 5, 10, 3.5, 2.25, etc).  

• Note that TC will wait for the specified duration before starting any feedback processing, 
so the countdown of the Feedback Timeout value that you have set in TC’s Network 
Settings won’t start until the [wait] period has passed. 

To set a specific termination character to look for within the feedback data, simply add 
“[term]terminator;” to the beginning of your feedback script. NOTE that the format of this is 
important. It must begin with “[term]” (without the quotes), and must end with a semicolon, 
and it must be at the beginning of your supplied feedback script (or immediately following the 
[wait] element if it exists). The value you supply as the terminator can be either a literal string 
value, or can be an escape sequence (i.e. \n for new line, or \r for carriage return), or can be 



Page 113 of 199 
Back to top 

any HEX value formatted as: \xNN (where NN is any two-character HEX value, such as \x1A for 
the EOF character). If the specified termination character/string is not found after all feedback 
data has been read, TouchControl will timeout and display an error. 
 
Alternately, to set a minimum required feedback data length that you expect to receive, simply 
add “[len]length;” to the beginning of your feedback script. NOTE that the format of this is 
important. It must begin with “[len]” (without the quotes), it must end with a semicolon, it 
must be at the beginning of your supplied feedback script (or immediately following the [wait] 
element if it exists), and the value you enter as the length must be a valid integer value. Once 
the minimum length of feedback data has been reached, TouchControl will continue. If the 
minimum length is not reached, TouchControl will eventually timeout (using the TC settings 
Feedback Timeout value) and display an error. 
 
TouchControl receives the feedback from your devices in "chunks" of data. Therefore, when 
using the [term] or [len] features, those elements only need to be found anywhere within the 
"chunk" of data being processed at the moment. That is, TouchControl will not truncate any 
data found after the termination character or length specified within the current chunk, so your 
script will receive all data received up to and including all data within that chunk, including the 
termination character/string (if using [term]). 
 
Adding "[notimeout]" to your feedback script will tell TouchControl to ignore any feedback 
timeout errors. Use this to suppress unwanted error popups when you expect feedback from a 
device, but don't really care if the feedback is received or not (such as in a polling scenario 
where you'll be executing the command again in the future anyway). Using '[notimeout]' will 
also suppress timeout messages for HTTP request buttons. 
 
Adding "[quiet]" to your feedback script will tell TouchControl to ignore any socket or feedback 
errors. This is similar to [notimeout], but in addition will also suppress errors generated by 
Global Caché devices, messages generated when [len] or [term] (above) are not satisfied, and 
HTTP errors in addition to those that are timeout related.  
 
Adding "[0x]" to your feedback script will force TouchControl to convert the feedback it 
receives to a HEX string. Like the other advanced flags, TouchControl will strip the "[0x]" from 
your feedback script before executing it. If you include "[0x]" in your script, it must follow any 
of the above advanced flags, but precede your actual script. 
 
Adding "[sync]" to your feedback script will force TouchControl to process all feedback before 
allowing any other button(s) to execute.  Without this flag, other buttons could execute while a 
button’s feedback script is running, especially if that feedback script is performing multiple 
tasks, such as updating the UI as well as executing other buttons using a return string, for 



Page 114 of 199 
Back to top 

example.  
 

Feedback Slicing  

An additional feedback script flag allows you to control what feedback data generated by your 
devices is presented to your feedback script.  Similar to the [term] and [len] script tags which 
determine how much feedback is expected from your device, the [slice] tag allows you to parse 
the feedback and only return a desired “slice” of the feedback to your script.  To use this 
feature, include the following at the beginning of your feedback script: 
 

[slice]prefix[:]suffix[;] 
 
This tag tells TouchControl to search through the feedback data and return only the data 
found after the provided prefix string, and up to but not including the 
provided suffix string.  For example, if your feedback data consisted of this: 
 

POWER1\r\nVOLUME20\r\nSURROUND5\r\nINPUT3\r\n 
 
Using this feedback slicing: 
 

[slice]VOLUME[:]\r\n[;] 
 
…would return the string 20 to your feedback script.  This allows you to reduce the feedback 
that your script receives to just what you are specifically interested in, so your script can be 
simpler and not required to do extra parsing just to find the desired value.  This is especially 
useful for devices that send large amounts of unrelated feedback, in addition to the desired 
feedback, when a specific command is sent (as if, in the above example, a command was sent 
to retrieve the current volume, but the power status, surround mode and current input were 
also returned as extraneous feedback). 
 
You may also omit the prefix string and supply only the suffix string, which will return all data 
from the start of the feedback up to (but not including) the suffix string.  Or you may omit 
the suffix string and only supply the prefix string, which will return all data found after (not 
including) the prefix string, through the end of the feedback.  When omitting 
the prefix or suffix strings, you must still include the delimiters, as shown in these examples: 
 

[slice]VOLUME[:][;] 
[slice][:]\r\n[;] 
 



Page 115 of 199 
Back to top 

If TouchControl searches the feedback data and finds the provided prefix string, but does not 
find the provided suffix string, it will return all data found after prefix, to the end of the 
returned feedback (just as if the suffix string was omitted).  If TouchControl does not find 
the prefix string, the feedback processing will wait for the selected feedback timeout duration 
(set in TouchControl settings) and will then time out (just as it does using 
the [term] or [len] flags if the specified terminator is not found or feedback length is not 
reached).   
 
In addition, if your activity includes both feedback-enabled buttons that use slicing (as shown 
above), and also a Feedback Client button using the same remote host, any feedback that the 
feedback-enabled button’s slicing does not process (i.e. any feedback found before the prefix or 
after the suffix) will be passed on to your Feedback Client button’s script to process.  So, in the 
above example, the feedback would be processed in the following order: 

1. The Feedback Client button would receive the feedback value of POWER1\r\n 
2. The feedback-enabled slicing button would receive the feedback value of 20 
3. The Feedback Client button would receive the feedback value 

of SURROUND5\r\nINPUT3\r\n   

  

This allows you to still process other non-sliced feedback (in the order received) if 
desired.  Including a Feedback Client button is not required, and if one does not exist using the 
same remote host as the slicing button, the remaining feedback will be discarded.  Other 
feedback-enabled buttons will not receive the remaining feedback from another feedback-
enabled slicing button.  This only applies to Feedback Client buttons that use the same host. 
NOTE: If the result of a slice is and empty string – that is, your prefix and suffix are found, but 
there is no data in the feedback between those strings (such as using 
[slice]SURROUND5[:]\r\n[;] in the above example), TouchControl will present no feedback to 
your feedback script, and thus your feedback script will have no feedback to process, and any 
script that uses the _feedback variable will not run.  You may, however, still use 
a return statement in your feedback script to execute a button or update UI elements, even if 
no feedback is returned from the slicing. 
 

Updating activity background images via script 

You can dynamically change the background image of an activity at run time via script. Simply 
add the following statement to any type of script of any button: 
 
_background='myNewBackground.png'; 
 
The new background image must exist in the backgrounds.zip file in your images directory, and 
the filename used in the above script must include the file extension (i.e. '.png' in the above 



Page 116 of 199 
Back to top 

example). The _background variable may be set to a static string, as above, or you may set it to 
a variable that holds the background image file name. When this script executes, the new 
background will fade in, replacing the previous background image. By default, the duration of 
the fade will use the "Animation Duration" setting under "Script Settings" in the TouchControl 
app on your iOS device. If you'd like to change the fade duration for this execution, simply add 
the following script as well: 
 
_backgroundDuration=2.5; 
 
Set the _backgroundDuration script var to any float value indicating the number of seconds for 
the fade duration. 
 
If the new background image is not the same size as the previous background image, the 
activity will be re-sized to fit the new background image. This would allow you to dynamically 
alter the size of your activity at run time, potentially turning a single-screen activity into a 
scrolling, multi-screen activity, as an example. If you would like the activity size to remain 
constant, regardless of the size of the newly supplied background image, simply add the 
following script as well: 
 
_backgroundAdjust=false; 
 
Using this script, if the new background image is not the same size as the previous image, the 
new image will stretch or shrink to fit the size of the previous image. The default for 
_backgroundAdjust is true (re-size the activity). 
 

Determining device network status via script  

The following two script variables will allow you to determine your iOS device's current network 
status (i.e. WiFi or WWAN) at any time: 
 
_isWiFi (true if the device is currently connected to a WiFi network, otherwise false) 
_isWWAN (true if the device is currently connected to a WAN/cellular network, otherwise false) 
 
Usage: 
if (_isWiFi) { 

//do something here 
} 
 

Disable full-screen activity "go-back" swiping via script 

Normally when using a TouchControl activity in full-screen mode, a swipe either from left-to-
right, or from top-to-bottom on a blank spot on the activity background will perform the 
equivalent of a "go back" link, returning you to the previous activity or home screen. If this 



Page 117 of 199 
Back to top 

gesture interferes with the use of your activity, such as when using sliders, you can disable the 
swiping gesture for the given activity with the following script helper function: 
 
_enableActivitySwipe(false); 
 
You can re-enable swiping by calling the helper function and passing true as the parameter as 
well. Note that this only affects the activity during its life-cycle, so if you close and re-open the 
activity, you'll need to re-execute this helper function, likely in an auto-exec on load button.  
 



Page 118 of 199 
Back to top 

Advanced Scripting  
 

Advanced scripting features improve and enhance the feedback and scripting functionality of 
TouchControl, providing advanced automation capabilities. 
 

Button pre-script and post-script  
Most button types now include the ability to execute script before and/or after the “command-
feedback cycle” (sending the button’s command and receiving and processing any generated 
feedback), giving you both greater control over the button’s actions, as well as the potential to 
consolidate multiple actions into a single button.  

Button pre-script runs immediately when you tap on a button on your remote control 
screen, and before the buttons defined action executes. Pre-script has access to the 
executing button’s properties (such as the button’s name, type, text, image, icon, 
command, slider/spinner values, etc.) via script variables available at runtime. See 
“Button Script Variables” later in this document for information regarding those script 
variables. Pre-script allows you to, among other things, interrogate and/or update a 
button’s command immediately before it executes, potentially changing a button’s 
behavior at runtime based on global variable values, other button states, etc. Pre-script 
also provides a mechanism for cancelling a button’s command before it executes, 
potentially allow a button to determine its own fate, rather than requiring an additional 
button and its feedback to determine whether or not it should be executed. These 
capabilities have the potential to consolidate the processing that previously may have 
required multiple buttons to perform. Button pre-script is comprised of standard 
JavaScript, as is all other script contained within TouchControl. 

If a button supports pre-script, you will find a “Pre-Script” input field on the button’s 
configuration panel within TouchControl server. Simply enter your custom JavaScript in 
that field, refresh the configuration to your device, and the script will begin executing as 
soon as you tap on the button on your remote control screen. 

Button post-script runs immediately after a button’s defined action executes (including 
receiving any feedback and any feedback script has completed). Post-script has access to 
the executing button’s properties (such as the button’s name, type, text, image, icon, 
slider/spinner values, etc.) via script variables available at runtime. See “Button Script 
Variables” later in this document for information regarding those script variables. These 
capabilities have the potential to consolidate the processing that previously may have 
required multiple buttons to perform. Button post-script is comprised of standard 
JavaScript, as is all other script contained within TouchControl. 

If a button supports post-script, you will find a “Post-Script” input field on the button’s 



Page 119 of 199 
Back to top 

configuration panel within TouchControl server. Simply enter your custom JavaScript in 
that field, refresh the configuration to your device, and the script will execute after your 
button has completed is defined action. Note that unlike pre-script, post-script does not 
have access to the button’s command, as the command has already executed prior to 
post-script running. Also, the script defined for both spinner and slider buttons will 
always run as post-script, that is after the spinner or slider control has finished with its 
selection event. 

Custom Button Properties  
Any button may have its own custom “properties” defined, which are simply name/value pairs 
that you assign to individual buttons which are then available within script at runtime. Your 
script (pre/post/feedback) may read and/or write to those property variables at button 
execution time, giving you enhanced abilities for conditional command execution, finding and 
executing buttons from another buttons’ script, etc. Properties may be added to buttons from 
either the buttons list, and/or after a button has been added to an activity layout within the 
layout designer. Adding properties from the buttons list allows you to create "default" 
properties that carry forward to any activity the button may be added to. Alternately, adding 
properties to buttons after they have been added to an activity layout allows a button to be 
used in multiple activities, but with different, unique properties in each activity.  
 
A button may also display any of its property values as it's text on the iOS device screen. This 
allows you to have the same buttons displayed on a remote control screen multiple times, but 
with different text.  
 
To add properties to buttons: 

1. First you must define the properties that will be available to all buttons. Choose Tools – 
Settings from the TouchControl Server menu, then click the “Custom Properties” button 
to open the Property Manager panel. 

2. Click the “+” button to add a new property, enter a unique property name, then click 
“Save” to add the property name to the list. Each property name can then be given a 
unique value for each button on your layouts. 

3. Click the “OK” button to close the Property Manager panel, the click “Save” to exit 
Settings. 

4. Create a button 

5. To add a "default" property to the button, right-click on the button in the buttons list, 
and select "Properties...". Or to add an activity-specific property to the button, drag the 
button to a layout, then right-click on the button and select "Properties...". Either of 
these methods will open the Button Properties panel for that button. 



Page 120 of 199 
Back to top 

6. Choose the property you would like to add to this button from the "Name" list at the 
top (the list created in steps 1-4). 

7. Enter a value for that property for this button. 

8. Click the “+” button to add the property name to the button with the specified value. 
You may only add an individual property once to a button. 

9. To edit a property value, select it in the list and change the value above, then click the 
“+” button again to set the new value for the property. 

10. Select a property in the list and click the “-“ button at the bottom to remove a property 
from the button. 

11. Click the “Save” button when finished adding/updating the button’s properties. 

12. If a button which has default properties assigned is added to a layout, accessing the 
button's properties from the layout designer will display the default properties for that 
button. You may delete or update the value for any of the default properties, and those 
changes will be local to the current activity (i.e. will not alter the default properties for 
this button on any other activity). 

 

Now at runtime, within pre-, post-, or feedback script, you may access the currently executing 
button’s properties via JavaScript object notation using the _property object: 

_property.myProperty 

You may also update or create new properties in the same manner: 

_property.myProperty = ‘new value’; 
_property.newProperty = ‘a value’; 

Where this becomes valuable and powerful is when combined with the current method of 
updating and/or executing another button from the current button’s script. Currently you can 
update a button’s text, image, and/or icon by returning a string similar to the following from a 
button’s script: 

return ‘Mute^Mute On[@]mybuttons/muteon.png’; 
(where “Mute” is the name of the button, “Mute On” is the new text displayed on the 
button, and “mybuttons/muteon.png” is the button’s new background image) 

With the addition of button properties, you can update a button or buttons using the following 
script return string: 

return ‘myPropertyName~myPropertyValue[@]mybuttons/blue.png’; 



Page 121 of 199 
Back to top 

(where myPropertyName is a custom property, and myPropertyValue is its value) 

This return method will match all buttons with the given property/value pair, and update the 
text/image/icon of all of them (only the image is updated in the above example).  
In the same manner, you can currently trigger the execution of a button by returning a string 
similar to the following from a button’s script: 

return ‘[#]Play’; 
(where “Play” is the name of a button on your layout) 

Now with the addition of button properties, you can execute a button or buttons using the 
following script return string: 

return ‘[#]myPropertyName~myPropertyValue’; 
(where myPropertyName is a custom property, and myPropertyValue is its value) 

This return method will match all buttons with the given property/value pair, and execute each 
one (which in turn could use the same method to update/execute other buttons as needed). 
So, with the combined ability to update button properties at runtime, and then use those 
properties to find, update and/or execute buttons dynamically through script, this opens up the 
capability to create extremely dynamic and interactive custom control interfaces. 
 
(Mac only) In addition to the above methods of setting button properties, if you right-click on a 
device in the “Available Devices” list, and then select the “Property…” option, a dialog will 
appear that will allow you to add a property to, or remove a property from, all buttons in that 
device.  This is the same as using the Buttons list right-click method of setting a property on a 
button, but allows you to set the property on all buttons in the device simultaneously. 
 

Built-In Button Properties  
Some button types have “built-in” button properties that are pre-existing and known to 

TouchControl.  These properties can be used and referenced exactly like any other custom 

property (above), but also provide certain internal type-specific functionality for their associated 

button types.  The following is the list of built-in properties and their provided functionality: 

 

For buttons that display text 

Property name Value Purpose Default 
TextAlign left/center/right Align text within the 

button 
center 

TextFont fontname (e.g. Georgia-Bold) 
fontname^size (e.g. GillSans-
Italic^24) 

Set the button’s font 
to any iOS font name 
and optional size 

Bold system font 
at size selected in 
interface designer 



Page 122 of 199 
Back to top 

 
For Slider buttons 

Property name Value Purpose Default 

sliderBarLeft See Custom Slider Images Provide custom 
slider bar left image 

Native iOS slider 
bar 

sliderBarRight See Custom Slider Images Provide custom 
slider bar right 
image 

Native iOS slider 
bar 

sliderThumb See Custom Slider Images Provide custom 
slider thumb image 

Native iOS slider 
thumb 

 
For HTTP Request buttons 

Property name Value Purpose Default 

HTTPAuth userid:password Provide 
credentials for 
web requests 

None 

HTTPHeaders headername1=headervalue1^ 
headername2=headervalue2^etc… 

Provide any 
required HTTP 
headers for web 
requests 

Standard headers 

UserAgent See Alter a Web View’s Identity Provide custom 
user agent for 
Web View 

Standard Mobile 
Safari user agent 

 
For all button types that render as a button on the screen 

Property name Values Purpose Default 

CornerRadius 
 

Any integer Round the 
corners of the 
button 

0 (square corners) 

stretch true/false Setting to false 
prevents the 
button from 
stretching or 
compressing in 
an activity set to 
“Scale to Fit”. 

true 



Page 123 of 199 
Back to top 

 
For Gesture Pad buttons 

Property name Values Purpose Default 

MouseServer 
(Windows 
server only) 

See Redirect Mouse & 
Keyboard Control  

Control the mouse and 
keyboard on computers other 
than the primary TouchControl 
server system 

None 

 

 

 

For Group buttons 

Property name Values Purpose Default 

TouchMotionXExtents 
 

xLeft,xRight  
(e.g. 10,300) 
See TouchMotion 

Constrains the movement of 
a group when using 
TouchMotion to the extents 
provided (i.e. left edge 
cannot move left of xLeft, 
and right edge cannot move 
right of xRight). 

None 

TouchMotionYExtents 
 

yTop,yBottom  
(e.g. 5,450) 
See TouchMotion 

Constrains the movement of 
a group when using 
TouchMotion to the extents 
provided (i.e. top edge 
cannot move above yTop, 
and bottom edge cannot 
move below yBottom). 

None 

 
For _deviceMotion buttons 

Property name Values Purpose Default 

MotionInterval 
 

See Device Motion Sensing Sets the device motion 
sensing update interval 

Per 
device 

 
For _mouseMoveButton buttons 

Property name Values Purpose Default 

MouseThrottle Integer (e.g. 5) 
See Gesture Pad Mousepad 

The number of pixels required to 
swipe before moving the mouse 
pointer – provides mouse speed 
control 

3 



Page 124 of 199 
Back to top 

 
For _macroMessage buttons 

Property name Values Purpose Default 

DisplayFrame See MacroMessage Provide size and position 
parameters for macro 
messages 

Size and position of 
_macroMessage 
button on layout 

 

For all buttons on a watch activity 

Property name Values Purpose Default 

WatchIndex See Watch Button 
Configuration 

Provide 
ordering/positioning for 
buttons on a watch layout 

None 

 
For Multi-Peer buttons 

Property name Values Purpose Default 
MPAutoAccept See Multi-Peer 

Button Properties 
Sender auto-accepts all 
requests from receivers 

False 

MPConnectScript See Multi-Peer 
Button Properties 

Script that runs when a 
peer connects 

None 

MPDisconnectScript See Multi-Peer 
Button Properties 

Script that runs when a 
peer disconnects 

None 

MPSendDataMode See Multi-Peer 
Button Properties 

Allows ensuring all 
messages are sent 
(Reliable) 

Unreliable 

 

Custom script libraries  
With the increase in scripting capabilities for buttons, TouchControl also adds the ability to 
create custom script libraries that can contain variables and function to use from within your 
button scripts, eliminating the need to duplicate common code in multiple buttons/locations. 
Script libraries can be added in two forms, either raw script entered directly into TouchControl 
server, or URLs that point to JavaScript source files location on other Web servers. 
To create or reference a script library: 

1. Choose Tools – Settings from the TouchControl Server menu, then click the “Script 
Manager” button to open the Script Libraries panel. 

2. Select the type of library you would like to add from the tabs at the top. The “URLs” 
option reference URL links to libraries on other servers. The “Script” option allows you 
to enter your own raw JavaScript which is stored within TouchControl Server. The “Files” 
option allows you to specify external script (.js) files in your PC's file system or on a 
network drive, which will be downloaded to your iOS device during config refresh. The 
“Internal” option presents a list of “built-in” libraries provided by the developer or other 



Page 125 of 199 
Back to top 

3rd parties that are there for you to use. There may or may not be libraries available on 
this tab. NOTE: Currently external script files are not included in the configuration 
export/import process, so when exporting and sharing configurations between PC's or 
between users, those script files, if any, must be transferred along with the 
configuration .zip file, and the references to those files in Script Manager must be 
updated with the locations of the script files on the destination system. 

3. When “URLs”, “Script” or “Files” is selected, click the “+” button to open an interface 
that allows you to enter the required information for the library – a unique name for the 
library (for your reference), and either a URL to a file on a remote server, a filename, or 
the raw script itself. 

4. You may also add an external script file to the "Files" list by dragging and dropping the 
script (.js) file onto the "Files" tab/list. This will open the new script file panel, allowing 
you to provide a unique name for the script library file. 

5. To modify a script library entry, simply double-click it in the list. 

6. To remove a script library entry, select it in the list and click the “-“ button. 

7. To include a built-in “Internal” script library, switch to the “Internal” tab and simply 
select the library entry you desire, or de-select it to no longer load it in the device app. 

8. Once you’ve included all libraries of each type that you desire, click the “OK” button to 
exit the Script Manager. Then click “Save” to exit server Settings. 

 

After adding external script files to the "Files" list, you may also edit those .js files directly from 
the Script Manager interface. To enable this, you must first set the default script editor 
executable by right-clicking the "Files" list and selecting "Set file editor...", and entering the 
path and filename of the executable of your desired script editor. Alternately, you may drag and 
drop the executable (.exe) file for your desired script editor onto the "Files" list to automatically 
set it as your default script editor. Once your script editor is set, you may right-click on any 
entry in the "Files" list to launch that file in the specified script editor program. Note that the 
editor specified here is also used to edit script within the server button designer panels, when 
the "Use external script editor in designer" server setting/preference is enabled. 
 
Once your script libraries are defined, the next time you refresh the configuration within 
TouchControl on your device, the app will pull down the script libraries from the specified 
locations (either from TouchControl server or from a remote Web server). Then JavaScript 
within your buttons may reference the functions and variables within the script libraries using 
standard JavaScript syntax: 

if (myScriptLibraryVar == true) { … }; 
var x = myScriptLibraryFunction(); 



Page 126 of 199 
Back to top 

If a function from a script library needs to return data (such as a formatted return string) to 
TouchControl, when calling that function from your button script, you must "chain" the 
returned data from the called function on to TouchControl. For example:  
Your script library function: 

function myScriptLibraryFunction() { 
... 
... 
return 'myButton^newText'; 
} 

 
Your button script:  

return myScriptLibraryFunction(); 

Without this "chaining", your script library function will simply return its string to your button 
script, but not on to TouchControl itself. 
 
Please note that referencing script libraries located on other servers (the “URL” type) has the 
potential to slow down the initial load or configuration refresh in the app on your device, if 
those script libraries are very large, or are for some reason slow to load or unavailable. Under 
normal circumstances with reasonably sized libraries located on servers on the local LAN 
network, you should not have any issues. (“Reasonably sized” is an intentionally vague term, 
and is based on what your interpretation of “slow to load” is.) 
 

Button Script Variables  
TouchControl can read, and in some cases write, script variables containing information about 
the currently executing button. The following script variables are available: 

• _name – the name of the currently executing button (read-only)  

• _type – the type of the currently executing button (read-only)  

• _text – the text displayed on the currently executing button (read/write)  

• _image – the image displayed on the currently executing button (read/write)  

• _icon – the icon displayed on the currently executing button (read/write)  

• _top - the pixel location of the y coordinate of the button on the screen (read/write)  

• _left - the pixel location of the x coordinate of the button on the screen (read/write)  

• _width - the width of the button in pixels (read/write)  



Page 127 of 199 
Back to top 

• _height - the height of the button in pixels (read/write)  

• _rotation - the buttons rotation, in degrees (read/write)  

• _alpha - the button's opacity - 0.0=fully transparent, 1.0=fully opaque (read/write)  

• _textSize - one of the designer values: "small", "medium", "large", "x-large"; or a 
numeric font size value (read/write)  

• _textColor - one of the designer values: "black", "white", "blue", "red", "green", 
"yellow", "orange", "purple", "brown", "cyan", "magenta", "gray", "lightgray", 
"darkgray";  or a hex color value (read/write)  

• _buttonBackgroundColor - one of the designer values: "black", "white", "blue", "red", 
"green", "yellow", "orange", "purple", "brown", "cyan", "magenta", "gray", "lightgray", 
"darkgray"; or a hex color value (read/write) 

• _enabled - the "Enabled" property of the button - also available from the button’s 
popup (right-click) menu (read/write)  

• _command – the command executed by the currently executing button (read/write)  

• _interval – the repeat interval of the currently executing button (read/write)  

• _sliderAction – indicates whether the current button was executed by a slider (read-
only)  

• _spinnerAction – indicates whether the current button was executed by a spinner (read-
only)  

• _slideSpinValue – the current value of the slider/spinner which executed the button 
(read-only)  

• _selectedItem – the selected item in a spinner/table (read/write)  

• _selectedIndex – the selected index in a spinner/table (read/write)  

• _execByName – the name of the button which executed the button via script (if any – 
read-only)  

• _execByType – the type of the button which executed the button via script (if any – 
read-only)  

• _property – object containing the button’s custom properties (read/write – see “Custom 
Button Properties” above)  

• _items – array containing a spinner button’s entries (read/write)  

• _pressed – the path to the "pressed" image defined for the currently executing button, 
if any (read/write)  



Page 128 of 199 
Back to top 

• _device – the name of the device that contains the currently executing button (read-
only) 

These variables may be accessed from script using: 

if (_name == ‘myButton’) { … }; 
_text = ‘My New Button Text’; 
if (_property.myPropertyName == ‘myPropertyValue’) { … }; 

Although a button’s text, image and icon may still be updated using the formatted script return 
string (as shown in the “Custom Button Properties” section above), you may also update these 
properties on a button directly from script without the requirement for the return string. 
Accessing these properties from your script can give you greatly enhanced visibility into and 
control over the buttons on your layouts, allowing a much more dynamic and interactive 
experience.  
 

Helper functions 
The above variable may be accessed directly to alter the properties of the currently executing 
button (the button that "owns" the script that references these variables. The read/write 
properties of other buttons on the layout may also be accessed and/or updated from any other 
button's script as well, using built-in "helper functions." Each of the above variables has 
corresponding "_get" and "_set" helper functions which allow you to read or write the property 
on the designated button. Below are just a few examples, but all of the above read/write vars 
have a corresponding "_get" and "_set" helper function. 

• _getText('myButton');  

• _setText('myButton','new text');  

• _appendText('myButton','text to append');  

• _appendLine('myButton','text to append'); // adds a line feed after the supplied text  

• _setTextFont('myButton','Papyrus'); // any supported font name  

• _getImage('myButton'); 

• _setImage('myButton','myButtons/theButton.png');  

• _getPressed('myButton'); 

• _setPressed('myButton','myButtons/theButton.png'); 

• _getIcon('myButton'); 

• _setIcon('myButton', 'buttonicons/White 20x20/play.png');  

• _getTop('myButton');  

http://iosfonts.com/


Page 129 of 199 
Back to top 

• _setTop('myButton',100);  

• _setTop('myButton',_getTop('myButton')+20);  

• _getLeft('myButton');  

• _setLeft('myButton',200);  

• _setLocation('myButton',newLeft,newTop);  

• _setAlpha('myButton',.5);  

• _setRotation('myButton',_getRotation('myButton')+10);  

• _setTextSize('myButton','medium');  

• _setTextSize('button',20);  

• _setTextColor('myButton','white');  

• _setTextColor('button','#35FB4C');  

• _setBackgroundColor('button','white');  

• _setBackgroundColor('button','#35FB4C');  

• _setEnabled('myButton',false);  

• _getCommand('button');  

• _setCommand('myButton','some new command\n'); // include any required command 
terminator  

• _setItems('mySpinner', arrayOfItems'); // set new spinner items 

• _getSelectedItem('mySpinner'); // get the selected item value (string) - valid for spinners  

• _setSelectedItem('mySpinner', 'item value'); // select an item - valid for spinners  

• _getSelectedIndex('myButton'); // get the selected index (integer) - valid for sliders or 
spinners 

• _setSelectedIndex('myButton', 10); // select an index - valid for sliders or spinners  

• _setFrameAndAlpha('myButton',newleft,newtop,newwidth,newheight,newalpha);  

• _setFrameAndRotation('myButton',newleft,newtop,newwidth,newheight,newrotation);  

• _setFrameAndAlphaAndRotation('myButton',newleft,newtop,newwidth,newheight,new
alpha,newrotation);  

• _animateTop('myButton',newtop);  

• _animateLeft('myButton',newleft);  



Page 130 of 199 
Back to top 

• _animateWidth('myButton',newwidth);  

• _animateHeight('myButton',newheight);  

• _animateAlpha('myButton',newalpha);  

• _animateRotation('myButton',newangle);  

• _animateLocation('myButton',newleft,newtop);  

• _animateSize('myButton',newwidth,newheight);  

• _animateFrame('myButton',newleft,newtop,newwidth,newheight);  

• _animateFrameAndAlpha('myButton',newleft,newtop,newwidth,newheight,newalpha);  

• _animateFrameAndRotation('myButton',newleft,newtop,newwidth,newheight,newrotat
ion);  

• _animateFrameAndAlphaAndRotation('myButton',newleft,newtop,newwidth,newheight
,newalpha,newrotation); 
 
The following helper function are for use with spinner buttons using the "Grid" layout:  

• _scrollTo('MyGrid','first'); //scroll to the first button in the grid named "MyGrid"  

• _scrollTo('MyGrid','last'); //scroll to the last button in MyGrid  

• _scrollTo('MyGrid','top'); //scroll to the top of MyGrid (same as "first")  

• _scrollTo('MyGrid','bottom'); //scroll to the bottom of MyGrid (same as "last")  

• _scrollTo('MyGrid',12); //scroll to the button at position 12 in MyGrid (any integer) 

 
Other available non-button-specific script variables and helper functions 

• _deviceName - the unstructured name of your device, found in iOS Settings - General - 
About  

• _ipAddress - the current local WLAN IP address of the iOS device  

• _activity - the name of the currently activity  

• _location - the name of the current activity’s location  

• _title - the string displayed in navigation bar on the main activity screen - can be the 
current TouchControl Server's name, a custom string that you supply, or blank 

• _fullScreen - returns true if the current activity is in full-screen mode, otherwise false. 

• _sleep - the current device sleep mode ("enabled" or "disabled")  



Page 131 of 199 
Back to top 

• _brightness - the current screen brightness between 0.0 and 1.0  

• _orientation - the current device orientation ("portrait" or "landscape")  

• _screenWidth - the width of the device screen  

• _screenHeight - the height of the device screen  

• _activityWidth - the width of the current activity layout  

• _activityHeight - the height of the current activity layout  

• _tcClearHistory() - remove all activities from the history stack except the current activity  

• _tcClearHistory('locationName^activityName') - remove a single activity from history  

• _tcClearHistory('locationName^*') - remove all activities for a given location from 
history  

• _tcClearHistory('*^activityName') - remove all activities with a given name in any 
location from history  

• _tcClearHistory('!locationName^activityName') - remove all activities from history 
except the one specified  

• _keyboardShowing - indicates if the iOS keyboard is currently showing (true or false)  

• _sleep(ms) - tell TouchControl to sleep for the specified number of milliseconds after 
the current script has completed.  

• _setActivityTitle('New Title') - Change the title shown in the navigation bar at the top of 
the activity screen for the lifetime of the activity (i.e. must be re-set upon exiting/re-
entering activity)  

• _dynamicServer - dynamically change the server that is being used by a Gesture Pad 
mousepad, or by any AutoHotKey, Command, or IR (USB-UIRT) type buttons on the 
currently displayed layout  

• _appVersion - returns the version of TouchControl currently running (read-only) 

• _isInBackground – returns true if the app has been sent to the background, false if the 
app is currently in the foreground 

• _ping() - see this page 

• _connectable() - see this page 

• _speak() and _voices() - see this page 

• _hideActivityButtons() - hide all buttons on an activity layout (tap anywhere on the 
activity background to re-show all activity buttons) 



Page 132 of 199 
Back to top 

• _showActivityButtons() - un-hide all buttons on an activity layout 

• _showGPKeyboard('padName') - Show the keyboard for a specified gesture pad 
mousepad 

• _hideGPKeyboard() - Hide the gesture pad mousepad keyboard 

• _toggleGPKeyboard('padName') - Show/hide the keyboard for a specified gesture pad 
mousepad 

• _batteryMonitor - see this page 

• _setFullScreen(true/false) 

• _screenFullBright() 

• _screenFullDim() 

• _screenRestoreBright() 

• _screenSetBright(absoluteValue) 

• _screenIncreaseBright(relativeValue) 

• _screenDecreaseBright(relativeValue) 

• _getBright() 

• _scroll(x, y) 

• _scroll('right'/'left'/'bottom'/'top'/'page right'/'page left'/'page up'/'page down'/'page 
left+up'/'page left+down'/'page right+up'/'page right+down') 

• _enableSleep() 

• _disableSleep() 

• _toggleSleep() 

• _getSleep() 

• _bringToFront('ButtonName') 

• _sendToBack('ButtonName') 

• _showKeyboard('TextFieldName') 

• _hideKeyboard() 

 



Page 133 of 199 
Back to top 

 
Local/Global Variables, and State Variables via iCloud  
In addition to the above variables, TouchControl also supports both local and global variables 
using script objects.  
 

Local Variables 
Local variables may hold any type of data, and are scoped to individual activities (i.e. they are 
only available within the activity in which they were created). Users can read and write local 
variables using JavaScript object notation as in the following examples: 
 
_local.myLocalVar = true; 
var x = _local.myLocalVar; 
 
A new _local object is created each time an activity is opened, and deleted when the activity is 
closed. Navigating from one activity to another (via link buttons) maintains the _local object in 
the calling activity (in the background), while creating a new _local object for use in the linked-
to (foreground) activity. When returning to the calling activity, its _local object is in-tact, with 
all previously defined variables and values. _local objects in different activities can contain 
variables with the same name, but containing different data/values, without overwriting the 
data/values from _local objects in other living activities. TouchControl takes care of making sure 
the _local object for the currently visible (foreground) activity is in scope at the proper time.  
 

Global Variables 
You may also read and write global variables using JavaScript object notation as follows: 
 
_global.myGlobalVar = true; 
var x = _global.myGlobalVar; 
 
Global variables may hold any type of data, and are scoped to the application, so all _global 
variables are available from within any activity. The _global object is re-created (i.e. any 
variables created on the object are removed) each time the app is killed & restarted, or when 
the configuration is refreshed from TouchControl Server.  
 

State Variables and iCloud 
You may also store global variables in iCloud, and share them between devices running 
TouchControl. This is useful for storing state of devices that you control, or of the TouchControl 
app itself. For this purpose, the _state script object is available to store these state variables as 
follows: 
 
_state.myStateVar1 = "On"; 
_state.myStateVar2 = "red"; 



Page 134 of 199 
Back to top 

 
Any variables created or updated on the _state object are automatically sent to iCloud, where 
they are automatically synchronized to any other iOS device running TouchControl (and which 
uses the same Apple ID, as iCloud sharing is based on authenticated Apple ID on each device). 
_state variables may be used just like any other _global variable, i.e. accessed across activities, 
used in %varname% command substitutions, etc. 
 
Normally, when you have this feature enabled, data from iCloud is synched to your device on 
startup, and each time a state variable is updated from another device. However, if the device 
you are currently using was the last one to update a variable's value in iCloud, then iCloud will 
assume you already have the most recent value, and will not sync the data to your device on 
subsequent sessions. So if you wish to make sure you are retrieving the most up-to-date value 
for a state variable from iCloud, you can use the _getState('varname') helper function in your 
script, which will return the current value for that varname stored in iCloud. 
 
To enable iCloud and the _state script object, access settings in TouchControl on your iOS 
device, scroll down to "Script Settings", and select the "Use iCloud State" option to enable it. If 
this option is not enabled, the _state script object will not exist, and will present the "undefined 
is not an object" script error when attempting to use it (if the "Show script errors" option is also 
enabled). iCloud variables will also not sync in either direction if this settings option is not 
enabled.  Within the iCloud state settings, you can also view any existing state variables that are 
currently stored in iCloud, and also clear all state variables, removing them from your iCloud 
storage. 
 

Script Handlers  
 

Handle socket disconnects/re-connects with script 
You can include script to run automatically when TouchControl detects a broken socket with a 
remote device, and also when TouchControl successfully re-connects with the remote device. 
Simply include the following JavaScript in any button in your layout that gets executed prior to 
using a remote connection (such as an auto-exec on load button): 
 
_local.tcDisconnect=myDisconnectFunction; // executes when socket connection is broken 
_local.tcReconnect=myReconnectFunction; // executes when socket connection is re-
established 
 
The above functions are defined on the _local script object, allowing you to define different 
connect/disconnect scripts for each of your activities if you wish.  
Then include the specified function(s) in any script library, as follows: 
 
function myDisconnectFunction(button, host, port) { 



Page 135 of 199 
Back to top 

/* your code here */ 
/* executes when socket breaks */ 
/* button = name of button executed */ 
/* host = IP address of remote device/host */ 
/* port = port number of remote device/host */ 

} 
 
function myReconnectFunction(button, host, port) { 

/* your code here */ 
/* executes when socket re-connects */ 
/* button = name of button executed */ 
/* host = IP address of remote device/host */ 
/* port = port number of remote device/host */ 

} 
 

Handle iPad rotation with script 
You can include script to run automatically when TouchControl detects that an iPad is rotating 
or has rotated to a new orientation. You may specify different script to run on rotation for each 
individual activity in your config. Simply include the following JavaScript in any button in your 
layout that gets executed prior to rotating the device (such as an Auto Exec on load button): 
 
_local.tcOrientationPrep=myOrientationPrepFunction; // executes just before rotation  
_local.tcOrientationChange=myOrientationChangeFunction; // executes just after rotation 
 
The above functions are defined on the _local script object, allowing you to define different 
orientation scripts for each of your activities if you wish.  
Then include the specified function(s) in any script library, as follows: 
 
function myOrientationPrepFunction(newOrientation) { 

/* your code here */ 
/* newOrientation = "portrait" or "landscape" /* 

} 
 
function myOrientationChangeFunction(newOrientation) { 

/* your code here */ 
/* newOrientation = "portrait" or "landscape" /* 

} 
 
Combine this feature with the ability to move and re-size buttons via script to dynamically 
create different portrait and landscape layouts, and automatically switch between them when 



Page 136 of 199 
Back to top 

the iPad is rotated. This is an iPad-only feature.  
 

Global Watchers 
“Global Watchers” allow buttons and labels to automatically update their displayed text based 
on the current value of _global variables set by any of your scripts.  To use this feature, simply 
set a button’s alternate Text value or a label button’s value (in the button config panel) to 
include the dynamic replacement tag for the desired _global variable. 
 
For example, to have a button automatically update its displayed text based on the value of the 
variable _global.currentVolume, set the button’s Text field to %currentVolume%.  Any time 
any of your scripts update that _global variable, any buttons or labels using that dynamic 
replacement tag will automatically update to the new value, so you don’t have to worry about 
updating them yourself in your script. The button or label text can contain only the dynamic 
replacement tag, or can include other strings along with the dynamic replacement, for 
example:  Volume: %currentVolume%. 
 
An “Image” field is also available in the alternate text area of the button config panel that 
allows you to use the global watcher feature to dynamically update button images.  Just enter a 
dynamic var replacement string (such as %toggleImage%) in this field to dynamically update a 
button’s image based on the value of a global variable (e.g. _global.toggleImage for the 
example shown here).  The contents of the _global var just needs to contain an image 
path/name formatted the same as when using _setImage() (something 
like MyButtonPack/myToggleImage.png, for example).  Same rules apply as the text watchers 
– the image will be updated to match the global var on activity load, when the var changes, and 
when returning to the activity after linking off to another activity. 
 
“Watcher” fields are also available on the slider and spinner config panels.  Again, enter a 
dynamic variable replacement string and you can dynamically update the selected value for 
sliders and spinners based on the value of a _global variable. 
 
If a dynamic replacement tag is used, but the referenced _global variable does not exist, the 
button or label will display the dynamic replacement tag in your activity.  Therefore, you should 
ensure that your referenced _global variables exist, most likely by initializing them in a script 
library or an auto-exec on load button. 
 
Global watchers will automatically update their text based on the _global variable’s value when 
the activity first loads, when the _global variable is updated, and when returning to an activity 
after linking to another activity.  This is useful, for example, if you go to another activity to 
change the channel or adjust the volume, and want to display the newly selected values on the 
original activity without having to kick off script to manually update the UI.  A subsequent 
_getText() of a watcher will return the updated text based on the _global replacement. 



Page 137 of 199 
Back to top 

 

NOTE: _local, and _state variables are also included in this processing, just as 
they are when using the other current dynamic variable replacement 
features in the app. 

NOTE: You can also use %0x:varName% in global watchers if you wish to 
automatically convert the value of varName to a Hex value.  Note that the 
value of varName must be convertible to a decimal (number) value. 

 



Page 138 of 199 
Back to top 

Apple Watch 
 

Activity configuration 
To create an activity for Apple Watch, use the activity config panel (arrow next to activity name 
drop down list) and change the activity type selection to "Watch". After selecting the watch 
type, the "Style" list will be available to select they layout style for the activity. The available 
styles are: 
 

• List (1, 2, or 3) 
This generates a vertically scrolling list of buttons on the watch face. The number 
associated with the list style indicates the maximum number of buttons that can be 
placed on each row of the list. Individual rows in styles 2 and 3 can contain fewer 
buttons, but not more than the style number indicates. If buttons are omitted from 
rows in style 2 or 3, the adjacent buttons will grow horizontally to fill in the available 
space, allowing for varying numbers of buttons per list row. 
 

• Grid 
This style allows for up to nine buttons placed on the watch face laid out in a 3 X 3 grid. 
If buttons are omitted, the adjacent buttons will grow to fill in the available space. If all 
buttons in a horizontal row are omitted, the buttons above and below will gravitate 
toward the center of the watch face to fill in the available space. 
 

• Stock layout styles 
The remaining styles are stock layouts provided by TouchControl with pre-determined 
layouts and included button images. 

 
See "Apple Watch interface styles" below for images of the various layout styles. The numbers 
at each button location are for reference only and not included on the actual watch activities. 
 
Once you have completed designing your activity, simply refresh the config in TouchControl on 
your iPhone to automatically transfer your watch activity to your Apple Watch. You may 
alternately use the refresh menu option in TouchControl on the watch to force your iPhone to 
refresh its config from TouchControl server, also automatically transferring all watch activities 
to the watch. 
 

Activity background  

You do not need to select a background for the activity in the designer, as the background of 
the activity on the watch will, by default be plain black. You can change this to use either the 
default blue gradient background used in the TouchControl iOS app, or you can use your own 
background image. To alter the activity background, right-click on the activity background in the 



Page 139 of 199 
Back to top 

designer and select "Watch background". This will open a text box allowing you to enter the 
background you would like to use. Enter "default" in this field to use the default blue gradient 
from the iOS app, or enter an image name (including button pack button file name - i.e. 
myButtonPack/myImageName.png). 
 
Note that you can add a background to the activity in the designer if you wish simply for design 
purposes (to increase the size of the activity design panel, for example), but it is not required or 
used by the watch.  
 

Default button background  
By default, all buttons on an activity will use a light gradient background, stretched to fill the 
size of the button. You can change this default for an activity by right-clicking on the activity 
background in the designer and selecting "Watch button background". Other selections include 
"Dark" (a dark gradient), "Blue" (a blue gradient), and "Transparent" (for a completely 
transparent button).  
 

Watch Button configuration 
Currently TouchControl watch activities support the following types of buttons: 

• IR  

• Command  

• HTTP Request  

• EventTrigger  

• AutoHotKey  

• Global Caché  

• IRTrans  

• Script  

• Macro  

• Label 
 
Due to the networking and scripting limitations of the Apple Watch, all button commands and 
script are executed via TouchControl running on the watch's paired iPhone. This requires your 
watch to be able to communicate with your iPhone via Bluetooth and/or WiFi. TouchControl 
does not need to be active on the paired iPhone to use TouchControl on the watch, as the 
watch communication framework will automatically launch TouchControl and execute the 
button commands in the background. Note that the first button command issued may incur a 
delay as TouchControl is started on the iPhone, but subsequent commands should execute 

https://support.apple.com/en-us/HT204562


Page 140 of 199 
Back to top 

immediately. 
 
To add buttons to the watch layout, simply drag and drop them on the activity designer panel 
as you would with any other TouchControl activity. The position of the buttons on the designer 
panel is not important, as the location of each button on the watch face will be determined by 
the watch layout style chosen, and the index specified for each button. 
 
Each layout style has a specific order for the buttons added to the activity (see the watch layout 
images below). The placement of buttons at each specified position is controlled by the 
"WatchIndex" property assigned to each button. To set the WatchIndex property, right click on 
each button on your layout and select "WatchIndex". This will open a dialog allowing you to 
specify the desired WatchIndex for the given button, or remove the WatchIndex property. The 
WatchIndex option on the popup menu will also display the current index value assigned to that 
button - or blank if no index has been assigned. WatchIndex values start at 1 and increment up 
to the maximum number of buttons allowed for the given watch layout. Note that list layouts 
can accommodate any number of buttons. 
 

Adjusting layouts  

You can adjust any of the base layouts by omitting buttons at various indexes, or by adding 
"placeholder" buttons that retain their assigned space but do not render on the watch face. 
Omitting buttons at any given index will allow the buttons on either side to grow to fill the 
space available from the missing button. This allows you to create rows with varying numbers 
of buttons with varying sizes. "Placeholder" buttons are added by including a button with a 
given WatchIndex, but then disabling the button in the designer (right-click on the button and 
de-select the Enabled setting). Adding "placeholder" buttons will retain the assigned space for 
the given index on the given layout, but will not render the button on the watch face. This also 
allows you to create rows with varying numbers of buttons with "custom" spacing. Note that 
Watch OS does not allow for positioning of buttons at specific pixel locations on the watch 
screen. All button placement is based on the horizontal and vertical flow of buttons on the 
screen. TouchControl allows for the horizontal flow of buttons on any given row, and the 
vertical flow of rows based on the presence or absence of buttons on any adjacent row.  
 

Hidden and placeholder buttons  

Hidden buttons can be added to the watch layout by adding the button to the activity designer 
panel, not setting a WatchIndex for the button, and disabling the button by un-selecting its 
Enabled setting (on the right-click popup menu). Hidden buttons can be used for auto exec (see 
below) or scripting purposes (such as [#] execution of buttons via script). Hidden buttons do not 
render in any fashion on the watch face. 
 
Placeholder buttons can be added to the watch layout by adding the button to the activity 
designer panel, setting a WatchIndex for the button, and disabling the button by un-selecting 



Page 141 of 199 
Back to top 

its Enabled setting (on the right-click popup menu). Placeholder buttons will not render on the 
watch face, but will reserve the space allocated for the specified WatchIndex on the given 
layout. This allows you to have greater control over the location of buttons and the overall 
layout of the activity.  
 

Button text  

Watch buttons can show or hide their text just as with an iPhone or iPad activity, by right-
clicking on the button in the designer and selecting Text - Show Text/Hide Text. You can also set 
the color of the button text in this same location. Note that text size cannot be set for watch 
buttons. The text on watch buttons will be rendered at a default size, and adjusted dynamically 
as needed to fit the button on the watch screen. Watch buttons can be provided custom text 
on the button config panel, but cannot render custom HTML. Button repeat and timer settings 
are also ignored on the watch.  
 

Button images and icons  

Watch buttons can be assigned background images and icons in the designer, just as with an 
iPhone or iPad activity. By default, any image you assign to a button will be place on top of the 
default button background (described above). To use only your selected image for a given 
button, right-click on that button in the designer and select "Watch button background". This 
will allow you to override the default button background for just that button, and selecting 
"Transparent" will render the button with only your image. Button icons will be placed on top 
of your selected button image, if one exists, or directly on the default button background if not. 
If a button contains both an icon and text, the icon will be placed to the left, and the text to the 
right for all layout styles except the Grid style, for which the icon will be placed above and the 
text below. If a button contains an icon but no text, the icon will be centered on the button. 
 
Please note that when adding both activity background images and button images/icons, you 
should use images that are relatively small and sized appropriately for the watch. The images 
used may be resized/stretched on the watch to fit the button that they are assigned to in the 
watch interface layout, so keep that in mind when creating and choosing a button image. Each 
of these images will be transferred to the watch and stored there for continued use. So be 
aware that using overly large images will require more space on the watch, and could impact 
both app performance and watch battery life.  
 

Auto Exec  

Watch buttons can be configured for Auto Exec on load, on resume, and on exit. Auto exec 
buttons can be either visible or hidden on the watch.  
 

Button feedback  



Page 142 of 199 
Back to top 

Watch buttons can be configured for feedback, allowing for normal feedback scripting executed 
on the paired iPhone, as well as basic feedback functionality on the watch. On-watch feedback 
functionality is limited to basic button text, image and icon processing as documented here.  
 

Watch Haptics 
Watch haptics provides feedback in the form of vibrations when certain events occur within the 
app. To enable haptics in TouchControl, open settings within TouchControl on the paired 
iPhone, scroll down and select Tools - Apple Watch, and select the type of haptic feedback you 
would like to receive from TouchControl on the watch.  
 

Apple Watch interface styles for TouchControl 
 
List 1 

 
List 2 

 
List 3 

 
 

 

  

Grid Style 1 Style 2 

 
 

 

  



Page 143 of 199 
Back to top 

Style 3 Style 4 Style 5 

 
 

 

  

 



Page 144 of 199 
Back to top 

Miscellaneous Topics 
 

The following topics dive deeper into several key TouchControl features.  These topics are in no 
particular order.  See the table of contents for a quick reference of what’s here. 
  



Page 145 of 199 
Back to top 

Sizes 
 
In TouchControl on your iOS device, open Settings (the gear icon in the upper left on the 
navigation bar), then scroll down and select the “Sizes” option under the “Tools” section.  This 
will provide an alert message that shows various sizes for UI elements on the current device, 
such as screen size, top bar height, @1x/@2x/@3x background image sizes (for both standard 
and full-screen activities), and safe areas (for full screen devices – i.e. the iPhone X and later, 
etc.).  Use these sizes to create your activity background images and position your buttons, if 
desired.  When executed on an iPad, this will report the sizes based on the current orientation 
of the device (portrait or landscape).   



Page 146 of 199 
Back to top 

Background Slideshow 
 
If you use TouchControl in an always-on setting, for example if you use a client or listener 
button to receive and process network requests/messages, use TouchControl’s built-in web 
server, use TouchControl as an always-on keypad/controller, etc., you can configure an activity 
to display a rotating slideshow of background images as a method of adding some visual 
interest, and helping to protect your device screen from burn-in. 
 
Slideshow images are accessed via the photo library on the device TouchControl is running on, 
and must be stored within a photo album in the Photos app.  All images located in the desired 
photo album will be used for the slideshow and continuously rotated through in an indefinite 
loop – as long as the activity is showing on your screen, or until you stop it.  TouchControl can 
access albums/images that are created/stored on the device, synched from iTunes, or available 
in iCloud.  When images from the selected album are loaded into the activity background, they 
are scaled to fill the activity/device screen.  Slideshow images transition using a fade/cross-
dissolve animation. 
 
To enable the background slideshow for an activity, use the following script: 
 
_backgroundSlideshow = true; 
_slideshowInterval = 60; // number of seconds to show each image – default is 300 (5 mins) 
_slideshowAlbum = "My Photos";  // the name of a user-created album in your Photos library 
 
Note that the _slideshowAlbum name must be entered exactly as shown in the Photos app, 
including proper case and any punctuation. 
 
To start a slideshow immediately when an activity loads, add this script to an Autoexec on Load 
button.  When starting the slideshow on activity load, the original background image for the 
activity (set in the designer) may show briefly when the activity first loads and before the 
slideshow starts, for the duration of the slideshow transition animation.  If this is an issue, you 
could set the background in the designer to a solid black (or other desired color) image of the 
proper size for the activity. 
 
To stop a running slideshow, use the script:  
 
_backgroundSlideshow = false; 
 
Or, to toggle the slideshow on/off, use: 
 
_backgroundSlideshow = !_backgroundSlideshow; 



Page 147 of 199 
Back to top 

 
When the slideshow is stopped, the last shown slideshow image will remain as the activity 
background until the slideshow is re-started, or the activity is closed and re-opened. 
To change the photo album being used for the slideshow, execute the script: 
 
_slideshowAlbum = "New Album"; 
 
To change slideshow interval, execute script that updates the _slideshowInterval variable. 
 
The slideshow will pause if TouchControl is sent to the background and should resume when 
brought back to the foreground.  Exiting the activity will terminate the slideshow, and re-
launching the activity will restart the slideshow from the beginning.  Slideshow images are 
shown in the order of image creation date as determined by the iOS photo library. 
 
A tool is available to show you the names of the available photo albums in your photo library on 
the current device.  Open Settings (the gear icon in the upper left on the navigation bar), then 
scroll down and select the “Script Settings” option under the “Tools” section, and tap on the 
“Show Photo Albums” option.  This will display an alert on your screen showing the user-
created albums found on your device (“smart” albums are not included in this list and are not 
available for use in a slideshow).  Remember to enter the album names exactly as shown in this 
alert, including proper case and any punctuation. 
 
You can also get an array of the available album names in your own script using the script 
variable: 
 
_photoAlbums 
 
You could use the album names, for example, to populate a spinner or table for album selection 
prior to starting the background slideshow. 
 
To use the same photo album on multiple devices, make sure the album is synched to all of 
your devices via iCloud. 
 
Optional: If desired, you can hide all of the buttons on an activity using the 
_hideActivityButtons() script helper function.  Execute this from a button/hotspot somewhere 
on your activity to hide your layout and give full attention to the slideshow background images.  
Simply tap anywhere on the activity background (slideshow image in this case) to re-show all of 
your activity buttons.   
 



Page 148 of 199 
Back to top 

Activity & Device Sharing 
 
TouchControl Server for macOS and Windows includes a feature that allows you to share your 
configuration information with other TouchControl users via the TouchControl web site.  You 
are able to share individual activities or devices that other users can download and import into 
their configurations.  See the Sharing page on the web site for more information. 

https://www.touchapptech.com/sharing


Page 149 of 199 
Back to top 

Network PING 
 

You can "ping" IP addresses or hostnames directly from TouchControl button script, allowing you to 
determine if a network-attached device or service is available (powered on, etc.) before you send a 
command.  This can be very useful, as an example, for devices that use a toggle power command, 
so you can determine ahead of time whether to send an on/off command, and avoid 
possibly getting your device out of sync with other devices in your environment.  Use the following 
command in your script to execute a ping: 
 

result = _ping('address', timeout) 

 
• address (string - required): The destination IP address or hostname (a specific port should not 

be included).   
• timeout (integer - optional): The number of whole seconds the ping process will wait for a 

response from the device/service. If timeout is omitted, the default timeout will 
be 2 seconds.  Partial seconds are not supported. 

• result (Boolean): True or false indicating whether or not the device/service returned a valid 
response to the ping within the timeout period. 

 
Example 1:   
var pingResult = _ping('192.168.1.1', 1) 
if (pingResult) { 
    // device is on 
    // your code here... 
} else { 
    // device is off 
    // your code here... 
} 

 
Example 2: 
if (!_ping('192.168.1.100')) { 
    // device is off 
    // your code here... 
} 

 

 



Page 150 of 199 
Back to top 

Connectable 

Use the _connectable() script function to test the availability of a specific port on a device on your 
network.  This can be useful, for example, if a device will respond to a PING even though it is 
technically "off", but a specific port will be unavailable until the device is turned "on".  Use the 
function as follows: 

var result = _connectable('192.168.1.100', 5000); 
if (result) { 
    // port is available 
    // your code here... 
} else { 
    // port is unavailable 
    // your code here... 
} 

_connectable() will return true if connection was successful, or false if it was not.  No 
timeout is applied by default.  To set a timeout, use: 

_connectable('192.168.1.100', 5000, 1); 
_connectable('192.168.1.100', 5000, 3); 
...etc. 

The timeout value is always in full seconds.  With a timeout set, if the device responds immediately, 
the function will return immediately and will not wait for the timeout. 

  



Page 151 of 199 
Back to top 

LocationManager 
 

Use the LocationManager script object (_locationManager) to retrieve your device's current 
location via script. LocationManager will retrieve the current location latitude and longitude values 
via the getCurrentLocation() function, and return the values via a script callback function as follows: 

_locationManager.getCurrentLocation( 

function(lat, long) { 

_global.locationLat = lat; 

_global.locationLong = long; 

 } 

); 

The callback function is required because retrieving the current location is an asynchronous process 
which can take up to a few seconds to return.  The getCurrentLocation() function will 
return immediately, and the supplied function(lat, long){...} will be called in the background by 
TouchControl when the values are available.  This example stores the values to _global variables 
for later use.  You may also return feedback from this callback function, such as return 
'[#]MyButton'; for additional control and functionality. 

  



Page 152 of 199 
Back to top 

Device Battery Monitor 
 
The _batteryMonitor script object allows you to get the current device battery charging state and 
level, and optionally turn on battery monitoring to be notified when the charging state and/or level 
changes.  You can either access the state and level info directly or supply a callback function to run 
whenever the state and/or level changes.   
  
The _batteryMonitor.state property returns an integer as follows: 

0 = unknown 
1 = unplugged 
2 = charging 
3 = full 

 
The _batteryMonitor.level property returns a float value indicating the current charging level. 
 
See the following script examples using Emoji symbols to display battery state on the screen: 
 
var batteryStateIndicators = ['❓', '❌', '⚡️', '🔋'];  //unknown, unplugged, charging, full 

 
To access the battery info directly: 
_setText('BatteryStateLabel', batteryStateIndicators[_batteryMonitor.state]); 
_setText('BatteryLevelLabel', (_batteryMonitor.level * 100).toFixed(0) + '%'); 

 
To execute a callback function when the battery state and/or level changes, start the monitor and 
pass it a function (TouchControl will dynamically call this function and pass the current state and 
level as parameters): 
_batteryMonitor.start( 
    function(state, level) { 
        _setText('BatteryStateLabel', batteryStateIndicators[state]);  
        _setText('BatteryLevelLabel', (level * 100).toFixed(0) + '%'); 
    } 
); 

 
To stop the battery monitor: 
_batteryMonitor.stop(); 

 

 



Page 153 of 199 
Back to top 

Speech Synthesis 

Use the _speak() script function to generate text to speech from within your own activities, and 
optionally specify a specific voice for the speech synthesis.  Use the function as follows: 

_speak(text to speak, voice ID/code) 

Examples: 
_speak('Hello world'); // use the TouchControl default voice 
_speak('Hello world', 'en-US');  // use the default voice for language/country code  
_speak('Hello world', 'com.apple.ttsbundle.Samantha-compact');  // use a specific voice ID 

An additional function provides a list of all available iOS speech synthesis voices.  You can use this 
function to provide a selection list of voices, or more likely, simply use it once to determine which 
voice you wish to use, and then provide the desired voice ID or code in your use of the _speak() 
function.  Note that using a different voice will not translate the given text to the given 
language.  This simply provides a different persona related to the given language/country.  To get 
the list of voices use: 

var voices = _voices(); 

This function provides an array of Voice objects containing the information needed to 
provide to the _speak() function (along with some other helpful info).  The properties of each 
Voice object are as follows: 

id: a unique voice identifier 
code: a country-specific language code 
language: the native language for the voice 
country: the name of the country for the voice 
name: the name of the persona used for the voice 

You will find there are multiple ID's/personas for several of the available 
languages/countries.  Passing a voice ID in the _speak() function will use the specific 
voice/persona assigned to the ID.  Passing a voice code will use the default voice/persona for 
the given country code.  Not passing an ID or code in the _speak() function will use the 
default US English voice as follows: 

voice.id = 'com.apple.ttsbundle.Samantha-compact'; 
voice.code = 'en-US'; 
voice.language = 'English'; 
voice.country = 'United States'; 
voice.name = 'Samantha'; 



Page 154 of 199 
Back to top 

 

NOTE: Audible speech synthesis when the device is in silent mode requires iOS 13 or above. 

A sample activity is provided on the Download page that demonstrates using _voices() to get the 
list of available voices, and using _speak() to synthesize dynamic text using a selected voice.  You 
may wish to use this activity to determine which voice you wish to use, and then just pass the 
desired voice ID or voice code in your use of the _speak() function. 

https://www.touchapptech.com/download


Page 155 of 199 
Back to top 

Siri Integration 

TouchControl is integrated with Siri on your iOS device, allowing you to create shortcuts for your 
favorite buttons and execute them with your voice. TouchControl buttons available for Siri 
Shortcuts are also exposed through Search results, allowing you to search for buttons by name 
outside of TouchControl and easily execute them.  
 
Siri/Search integration is available on devices running iOS 12 or later, and requires TouchControl 10 
or later, as well as TouchControl Server version 10 for Windows, or version 2 for macOS.  All primary 
button types, as well as macros and script buttons can be enabled for Siri and Search. 
 
To enable a button for Siri, add the button to an activity layout in the TouchControl Server designer, 
then right-click the button and choose the Shortcut menu option. This will display three 
configuration options: 

• Enable - this enables/disables Siri for the button.  
• Require confirmation - when enabled, this requires that you respond to a confirmation 

prompt before the button is executed. 
• Alert on success - when enabled, this triggers the display of a success message on the 

screen that you must manually dismiss. 

Once you have configured the desired buttons for Siri in the server designer, simply refresh the 
configuration to TouchControl on your device and the buttons are immediately available from 
Siri/Search.  To disable a button from being available for Siri, disable the Shortcut option for the 
button in the server designer and refresh your config to your device.  
 
Performing these actions makes your buttons available as actions for Siri Shortcuts. To create a Siri 
Shortcut using a TouchControl button, you'll need to use the Shortcuts app on your device to create 
the shortcut, set the TouchControl button action, and provide a phrase to trigger the shortcut when 
talking to Siri.  You'll also use the Shortcuts app to delete any shortcuts that you have created that 
you no longer need.  
 
A Shortcuts option also exists in the Tools section of TouchControl settings on your device that will 
display all buttons currently enabled for Siri.  You may disable buttons from being available as Siri 
actions by removing them from this location. This is useful if the activity that you enabled a 
button in no longer exists and you want to remove the button as a Siri action. Be aware that if you 
remove a button in this location but it is still enabled for Siri in an existing activity, it will be re-
added the next time you refresh your config.  
 
When a button is triggered via Siri or Search results, TouchControl will be activated on your device 
to execute the button. The activity that you enabled the button in will be loaded into memory in the 
background (not visible) and the button will be executed within the context of that activity. Make 



Page 156 of 199 
Back to top 

sure that any other buttons required for execution of the desired button exist on that layout as well 
- just as if you were executing the button normally from a remote screen in TouchControl.  
 
Any activity can contain buttons enabled for Siri, but you may wish to create a separate activity 
dedicated to all of your Siri-enabled buttons. This could be more efficient, as loading a large activity 
in the background to execute a single button via Siri could require more background memory 
resources than potentially required for that single button.  Again, just make sure that any other 
buttons/elements required to execute the button exist on that activity as well.  A dedicated 
shortcuts activity can also be hidden in your config if you wish. 

  



Page 157 of 199 
Back to top 

IFTTT Webhooks Integration 
 

Easily generate IFTTT Webhooks service requests in TC via HTTP Request buttons using either 
the Webhooks 3-value method or using a JSON payload.  See the IFTTT Webhooks 
documentation for information about those two Webhooks service features.  To enable this 
feature in TouchControl, access TC Server Settings - Preferences, and check the "Enable IFTTT 
Webhooks in HTTP Request buttons" option, and enter/paste your personal Webhooks key 
(found in IFTTT) in the provided "Key" field.  Then, when configuring HTTP Request buttons in 
TC Server, check the "IFTTT" option in the upper right to display the Webhooks trigger field, and 
select the Values or JSON payload type to display the appropriate fields.  Note that when using 
the IFTTT Webhooks option, the button's selected host IP address (configured in TC Server 
Interface Manager) must contain "maker.ifttt.com", and the port must be 443 (Webhooks 
requests use the HTTPS protocol).  Again, see the IFTTT web site for full documentation on the 
Webhooks service. 

https://ifttt.com/maker_webhooks
https://ifttt.com/maker_webhooks


Page 158 of 199 
Back to top 

External Mousepad 
 

Gesture Pad Mousepads can be configured to act as either "internal" or "external" 
mousepads.  "Internal" mousepads (the default) perform as normal mousepads, controlling the 
mouse on your TouchControl Server PC (Windows server only), using internal commands that 
are not exposed.  "External" mousepads, on the other hand, execute your buttons as your 
finger(s) move over the mousepad, gaining access to the X and Y coordinates of the mouse 
movements, as well as two-finger scroll interactions, one- and two-finger taps, and pinch/zoom 
gestures.  This could allow you to control your own devices (such as a new "smart" TV with 
cursor control) using natural mouse-like movements. 
 
When you configure a Gesture Pad and select the “MousePad" option, the mousepad may be 
further configured as “Internal" or “External” via radio buttons available on the Gesture Pad 
config page.  As described above, "external" mousepads use buttons on your activity to execute 
the desired commands.  To accomplish this, TouchControl will look for specifically-named 
buttons on your layout that it will execute when the various mousepad gestures are 
performed.  This is similar to enabling the hard volume buttons on your device by adding 
buttons named _vol+ and _vol- to your layout, or enabling device motion sensing by adding the 
_deviceMotion button. 
 
Following are the button names that TouchControl will look for and the functions that they 
provide.  The buttons names must match exactly, including the leading underscore and proper 
case. 
 
_mouseMoveButton - this button handles primary mouse movements, and is continuously 
executed as you drag your finger over the mousepad.  This button will have access to two new 
script variables: _mouseMoveX and _mouseMoveY.  Those variables contain the distance in 
pixels that the mouse moved since the last time the button was executed.  This distance, and 
thus the number of times this button is executed, will vary depending on how fast you move 
your finger.  A slow swipe will usually result in the button being executed about every 3px of 
movement, but can jump up to over 100px+ on fast swipes, and even more if you have “Use 
Swipe Velocity" turned on in the gesture pad.  Also, the X value will be positive when moving 
right and negative when moving left.  Likewise, the Y value will be negative when moving up 
and positive when moving down.  You can of course convert all the values to positive using 
Math.abs() in script if you need. 

• _mouseLeftButton - this button handles single, one-finger taps, which is equivalent to 
left mouse clicks on an internal mousepad. 

• _mouseRightButton - this button handles single, two-finger taps, which is equivalent to 
right mouse clicks on an internal mousepad. 



Page 159 of 199 
Back to top 

• _mouseHScrollButton - this button handles two-finger horizontal swipes, which is 
equivalent to horizontal scrolling on an internal mousepad.  This button has access to a 
new script variable: _mouseScrollX. 

• _mouseVScrollButton - this button handles two-finger vertical swipes, which is 
equivalent to vertical scrolling on an internal mousepad.  This button has access to a 
new script variable: _mouseScrollY. 

 
For the above scroll buttons, TouchControl determines if you swiped farther horizontally or 
vertically and executes the appropriate scroll button (but only one or the other, never both at 
the same time), and populates the associated variable accordingly with the number of pixels 
traveled since the last execution (positive or negative). 

• _mouseZoomInButton - this button handles the pinch-out gesture, which is equivalent 
to zoom in (make things bigger) on an internal mousepad. 

• _mouseZoomOutButton - this button handles the pinch-in gesture, which is 
equivalent to zoom out (make things smaller) on an internal mousepad. 

 
The above zoom buttons are executed multiple times as your fingers perform the pinch gesture 
on the mousepad.  There are no variables associated with these buttons.  Simply perform 
whatever function you wish from these buttons as the pinch is occurring. 
The buttons with the above names can be any type of “normal” button (i.e. not sliders, 
spinners, gesture pads, listeners, labels, text fields, etc.).  Basically, you can use any type of 
button that executes a command, script, or link when you tap on it (including a macro).  So, for 
example, they could be HTTP Request buttons that send commands directly to your TV, or they 
might be Script buttons that first “massage" the raw numbers and then execute other buttons 
using return ‘[#]some button’;  
 
A sample activity can be found on the download page that demonstrates all of these buttons, 
logging the events to a text field to display the x/y values in real time. 
 



Page 160 of 199 
Back to top 

Simple Service Discovery Protocol (SSDP)  
 

Simple Service Discovery Protocol (SSDP) is a network protocol that allows for the discovery, 
configuration, and control of devices on a network.  Using SSDP allows TouchControl to 
automatically find and control devices (receivers, televisions, set-top boxes, etc.) that support 
SSDP without the need to specifically configure IP addresses, ports, etc.  Devices that support 
SSDP for discovery also typically allow control via HTTP requests.  This makes it very easy to find 
and control devices with TouchControl. 
 
The SSDP process starts with an M-SEARCH request being broadcast to a specific IP address and 
port on a given network.  All devices that support SSDP should be listening for search request 
messages on that IP/port, and will respond directly to the device that sent the search request 
with information about the discovered device.  Many times, the discovered devices will 
generate multiple responses containing information about the various services that are 
available to interact with on the device.  All of the responses should contain a "Location" 
parameter that specifies a URL that can be used to get more information about the specific 
service.  The information available from the Location URL is specific to the device/service, so 
please see your device documentation for more information. 
 
SSDP requires the use of specific protocols, network addresses and ports as follows: 

• The M-SEARCH request must be sent via the UDP protocol to the multicast IP address 
239.255.255.250, on port 1900.  In TouchControl you would use an EventTrigger button 
to generate this request, with an interface host that specifies that IP address and 
port, and the UDP protocol. 

• Responses the that search request are sent back to the specific IP address and port that 
sent the request.  This requires TouchControl to also be listening for the responses on 
the same port used to send the request.  In TouchControl you would use a Feedback 
Listener button to listen for these responses.  The interface used for the Feedback 
Listener should specify no multicast address (which results in your device's local IP 
address), and use port 0 as the LAN port.  By specifying port 0, TouchControl will 
automatically ensure that it listens on the same local port used to send the search 
requests.  Note this is NOT port 1900.  Search requests are sent TO port 1900, but are 
sent FROM an internally specified port that TouchControl will manage. 

• Devices that support SSDP also periodically send messages out to the network 
advertising that they are available.  These "notify" messages are also broadcast to the 
multicast IP address 239.255.255.250 on port 1900.  To receive these messages in 
TouchControl, create a Feedback Listener button using a Feedback Listener interface 
host with that IP address and port.  Note that an M-SEARCH request DOES NOT need to 
be sent in order to receive these notifications.  This would be useful in TouchControl, for 

http://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol


Page 161 of 199 
Back to top 

example, if you have already discovered a device, but want to be notified at a later time 
if the device's IP address has changed. 
 

A sample activity is available on the download page that demonstrates using SSDP to discover 
devices on your network.  Please see the READ-ME file located in that activity export for more 
information on how to use it. 
 
Another sample activity is also available that uses SSDP to discover and control DirecTV 
receivers on your network, to give you a complete example of both discovering and controlling 
devices.  Please see the READ-ME file located in that activity export for more information on 
how to use it. 
 

http://www.touchapptech.com/#!download/c12ar
http://www.touchapptech.com/#!download/c12ar


Page 162 of 199 
Back to top 

Integrated Global Caché IR Database  
 

Global Caché's new "ControlTower" online IR code database has been integrated into 
TouchControl!  You can now search for and import ready-to-use IR codes directly into 
TouchControl Server while designing your buttons and layouts.  Individual codes can be added 
to existing GC buttons via the "Find" feature when configuring GC buttons, or partial or entire 
code sets can be imported, automatically generating buttons on the fly. 
 



Page 163 of 199 
Back to top 

Device Motion Sensing 
 

You can configure TouchControl to execute buttons as you tilt, roll, and rotate your device in 
your hand.  This feature uses the gyroscope and accelerometer built into your device to detect 
device movements, and provides the raw data to your buttons via script variables that you can 
use to perform whatever functions you choose via scripting. 
 
Data is passed via the following three script variables: 
 
_motionPitch - a floating point value indicating the "pitch" of the device if you rotate it end-
over-end 
 
_motionRoll - a floating point value indicating the extent that the device is "rolled" from side to 
side in your hand 
 
_motionYaw - a floating point value indicating the extent that the device is rotated on a flat 
plane around in a circle 
 
Motion sensing is triggered by the presence of a button on an activity named 
"_deviceMotion".  (This is very similar to how buttons named "_vol+" and "_vol-" trigger the 
use of the hard volume buttons on the iOS devices.)  This allows you to use any type of button 
you wish to process the motion events, with the button name being the only requirement. 
When TC detects a "_deviceMotion" button at activity launch, it starts monitoring the device 
motion events and provides the raw motion data via the above script variables, available to any 
button on the layout, and then executes the _deviceMotion button each time the device 
motion data is sampled. 
 
The default frequency (interval) for sampling the device motion events is .1 (10 per 
second).  This can be adjusted by setting the "MotionInterval" property on the _deviceMotion 
button to some other value.  (Right-click on the _deviceMotion button and select 
"Properties…", then select "MotionInterval" from the list of available property names.)  Note 
that the MotionInterval should be set as high as possible for whatever the specific use case is, 
as the _deviceMotion button gets executed at each interval, and can result in excessive 
overhead/lag depending on the type or amount of processing triggered by the execution of the 
_deviceMotion button. 
 
Beyond this, it is up to you to determine what is done with the device motion data.  You could 
execute buttons to scroll through a channel list on your TV/set top box, brighten or dim lights, 
control the mouse on your computer, etc.  On the Download page you will find a sample 
"AirMouse" activity that will allow you to control the mouse on your PC by waving your device 
around in the air.  Take a look at the script within the _deviceMotion button in this 

http://www.touchapptech.com/#!download/c12ar
http://www.touchapptech.com/#!download/c12ar


Page 164 of 199 
Back to top 

activity.  This script contains comments which explain what the button is doing and how it is 
using the pitch/roll/yaw values.  The MouseMove and MouseScroll buttons are Command-
type buttons that are executed by _deviceMotion to send the mouse commands to the server 
based on the values calculated within the _deviceMotion script.  There are several variables 
used within this script to control the speed & smoothness of the mouse movements.  Play with 
these values to find the best experience for your particular situation and preferences. 
 
There is also a hidden text field on the AirMouse layout named "MotionField" that you can 
enable, as well as a line of script in the _deviceMotion button’s script that you can un-comment 
to display the raw pitch/roll/yaw values in real time.  This will give you an idea of what the raw 
motion values look like.  Although, as the comment in the code indicates, doing this can cause 
significant mouse lag (see the above discussion of frequency interval and _deviceMotion 
processing overhead), so you’ll only want to do this briefly for testing/debugging. 
If you have any questions or problems with this feature or sample activity, please don't hesitate 
to contact support@touchapptech.com.  
 



Page 165 of 199 
Back to top 

Designer Device & Button Search (Windows server only) 

Device Search 
To easily locate a device in the Available Devices list, simply select any entry in the list and start 
typing any part of the desired device's name.  This will immediately filter the list to only the 
devices containing the typed string (which can appear at any location in the found devices' 
names).  To filter the list to only devices starting with a given character or string, simply press 
and hold the first character you wish to search for, and the list will immediately be filtered to 
display devices whose name starts with the entered characters.  Once you've found the device 
you are looking for, just press "Enter" to open the device and display its buttons, or press Ctrl-
Enter to add the device to the currently open activity. 
 

Button Search 
To easily locate buttons from any device in your configuration, simply select any entry in the 
"Available Devices" or the "Buttons for selected device" lists and either right-click and select 
"Find Button...", or just press Ctrl+F.  This will open the Find button panel.  Simply begin typing 
any part of a button name in the "Button name" field, and the result list will automatically filter 
to any buttons whose name contains the entered string.  Highlighting and selecting a button in 
the results list (use arrow buttons or click with mouse to highlight, then click "OK" or double-
click or press enter to select) will automatically select that button's device in the devices list, 
and automatically display and select the button in the buttons list. 
 



Page 166 of 199 
Back to top 

Grid Buttons 
 

A unique button presentation feature is available - referred to as a "grid" - which allows you to 
lay out multiple buttons in a free-flowing, independently-scrolling grid layout within your 
activities.  The grid is configured as a spinner-type button, using the "Buttons" mode, which 
allows you to add buttons from your configuration to the spinner (or grid in this case), and then 
selecting the "Display as grid" option in the spinner configuration will trigger the spinner to 
display as a grid on your iOS device.  By default, the grid will scroll vertically within the bounds 
that you specify when you size the spinner on your layout at design time.  When "Display as 
grid" is selected, you can also select "Scroll horizontally", which will trigger the grid to scroll 
horizontally within the spinner button's bounds. 
 
An additional requirement for using a "grid" type spinner button is that the buttons that you 
add to the grid within the spinner button's config panel must also be physically added to your 
layout at design time.  This allows you to set the image for each button, as well as other design-
time properties, such as text size, color, Touch Tips, etc.  At run-time, a copy of these buttons 
will be added to any grid that references them on the layout (you can have multiple grids on a 
given layout, and you may reference the same button in multiple grids if you 
choose).  Therefore, it is suggested that after you add the desired buttons to your layout, you 
should disable them (right-click and un-check the "Enabled" option), which will hide them in 
their initial location on the layout, and any button added to a grid will be automatically enabled 
before being added to the grid.  An easier method of doing this could be to add all of the 
buttons used in grids to a group button on your layout, and then disable the group button, 
keeping you from having to manage the visibility of each button individually (buttons added to 
a disabled group will not be visible, as the group's enabled property prevents it). 
 
The order that the buttons are added to your layout (or to a group button on your layout) does 
not matter, as the order that the buttons are referenced within the spinner/grid button's 
configuration will determine the order that the buttons are displayed within the 
grid.  Vertically-scrolling grids will layout buttons left-to-right/top-to-bottom.  Horizontally 
scrolling grids will layout buttons top-to-bottom/left-to-right.  If a button is referenced within a 
grid but cannot be found on the layout, a static label will be added to the grid in the location of 
the missing button, displaying the missing button's name.  Simply drag the button to your 
layout (and configure as desired) to fix this issue. 
 
All grids have a transparent background.  If you would like your grid to have a background color 
or image, you can either place a label button behind the grid and set a background color or 
image on the label, or add the grid to a group button, and set a background color or image on 
the group button.  Sample activities for both iPad and iPhone demonstrating grid buttons can 
be found on the download page, and these samples use a group button to provide a 
background image for the grid. 

http://www.touchapptech.com/#!download/c12ar


Page 167 of 199 
Back to top 

 
A new _scrollTo() script helper function is available to facilitate programmatic scrolling of grids 
to specified buttons.   
 

Examples: 

_scrollTo('MyGrid','first'); //scroll to the first button in the grid named "MyGrid" 
_scrollTo('MyGrid','last'); //scroll to the last button in MyGrid 
_scrollTo('MyGrid','top');  //scroll to the top of MyGrid (same as "first") 
_scrollTo('MyGrid','bottom');  //scroll to the bottom of MyGrid (same as "last") 
_scrollTo('MyGrid',12);  //scroll to the button at position 12 in MyGrid (any integer) 
 



Page 168 of 199 
Back to top 

Multi-Peer (Nearby Networking)  
 

Multi-peer, also referred to as "nearby networking", allows devices to find each other using 
various networking methods (WiFi or Bluetooth), and share data over those 
connections.  TouchControl uses this functionality to allow you to create activities that share 
data directly with other devices running TouchControl (peer-to-peer, without a server in 
between), for whatever data-sharing needs you may have, all managed and controlled behind 
the scenes by iOS and TouchControl. 
 
The multi-peer feature in TouchControl is exposed through Interface Manager, where you add a  
multi-peer interface with the required information.  To add a multi-peer interface:  

• Select "Tools - Settings - Interface Manager", then click "Add New". 

• Select the "Multi-Peer" option. 

• Give the interface a unique name.  This name is only used to distinguish this interface 
within Interface Manager. 

• Specify whether this interface will be a "Sender" or "Receiver".  Note that an activity 
may be both a sender and a receiver, using two different Interface Manager hosts. 

• Specify the "Session ID".  This is a unique ID used to identify the connection to both the 
sender and receiver, and is suggested to be short, simple, yet unique.  For each "Sender" 
interface using this unique session ID, there should also be a "Receiver" using this same 
session ID. 

• Click "Save" to add the interface to TouchControl Server.  

The multi-peer interface created above is used within your activity by an EventTrigger 
button.  Create an EventTrigger button and select the multi-peer "Sender" interface as the 
"Host".  Any data sent by this EventTrigger button will be receive directly by the "Receiver" 
interface on another device.   
 
 To add a receiver to an activity, create an EventTrigger button and select the "Receiver" 
interface as the "Host".  Any data received from the "sender" will be received in the _feedback 
variable accessible by the button's feedback script.  You do not need to explicitly "execute" the 
receiver button each time the sender sends data.  The receiver's feedback script will 
automatically be executed whenever it receives data from another multi-peer sender. 
 

The Multi-Peer Session 
The connection between a multi-peer sender and receiver is based on a session.  The sender 
creates a session and then browses the network for receivers.  This is done automatically when 
the sender EventTrigger button is executed, therefore setting a sender as an auto-exec on load 
button, or executing the sender from an auto-exec on load button is a good way to start the 



Page 169 of 199 
Back to top 

process when an activity is loaded. Likewise, a receiver starts advertising its availability on the 
network when the receiver EventTrigger button is executed, so again, executing the receiver 
EventTrigger button when the activity is loaded will make this happen automatically. 
 
Once the sender detects a receiver on the network, the sender sends an invitation to the 
receiver to join the session.  In TouchControl, the receiver will be prompted with a request to 
accept or decline the invitation.  If the invitation is declined, the receiver will ignore any 
additional invitations from that sender for the life of the activity (until you exit and reload the 
activity).  If the invitation is accepted, the sender is then prompted to either accept or decline 
the receiver's request to join the session.  Once both the receiver and sender have accepted 
their respective requests, the connection is established, and the sender can begin sending data 
to the receiver. 
 
A single session can include a sender and any number of receivers.  The sender EventTrigger 
button must be executed whenever data needs to be sent to the receivers who are included in 
the sender's session.  The data found in the sender EventTrigger button's command field will be 
sent to all receivers upon execution of the sender button.  Use the dynamic %varname% 
replacement feature of EventTrigger commands to dynamically update the data sent to all 
receivers each time the sender button is executed. 
 
 The receiver EventTrigger buttons do not need to be manually executed each time a sender 
sends data.  TouchControl will handle running the receiver button's feedback script each time 
data is received via the multi-peer session.  The receiver EventTrigger button's command field 
may be left empty, and the receiver does not send data back to the sender.  Only the feedback 
script is used on this button. 
 
If you need data to flow both ways (sender to receiver, and receiver back to sender), simply add 
both a sender and receiver button to an activity, so both clients can act as both sender and 
receiver.   
 

Multi-Peer Button Properties 
EventTrigger buttons have built-in properties that control various aspects of multi-peer 
communications. 
 

Sender-only EventTrigger Properties: 
 

MPSendDataMode - Set to "Reliable" to force reliable mode (iOS ensures the message is 
sent).  Set to an empty string to set to unreliable mode (the default, no guarantee the message 
will be sent).  Use unreliable when it is not imperative that a message be received by the 
receiver, such as when additional updates will be sent later anyway, as unreliable mode 
requires less overhead. 



Page 170 of 199 
Back to top 

 
MPAutoAccept - Set to "true" to force the sender to automatically accept all requests to 
connect from receivers.  Set to "false" (default) to force the sender to manually accept the 
incoming requests (via a popup alert).  Receivers must always manually accept an invitation 
from a sender. 
 

Sender and Receiver EventTrigger Properties:  
  

MPConnectScript - Set to a string containing script that will run when a peer connects to your 
session (suggestion: add a function to a script library, and set this property to that function 
call). 
MPDisconnectScript - Set to a string containing script that will run when a peer disconnects 
from your session (suggestion: add a function to a script library, and set this property to that 
function call).  
 

As a reference, the Scoreboard activity available with the default configuration, and also 
available on the download page, makes extensive use of the multi-peer feature, including the 
above EventTrigger button properties. 
 

If you try out this feature and have any problems at all, please contact 
support@touchapptech.com.  I'd be glad to help you get it up and running!  
 

http://www.touchapptech.com/#!download/c12ar


Page 171 of 199 
Back to top 

Activity Locking 
 

If you'd like to either restrict the activity or activities within your configuration that users can 
navigate to (or from), or if you'd like to present a lock screen requiring a password to unlock 
(such as after a timeout, similar to the iOS device lock feature), TouchControl's "Activity Lock" 
feature can provide this functionality. 
 
To lock an activity with a password, use the following special device command available with 
the Command button type: 
 
{screen lock:on:password} 
 
Replace "password" in the above command with the password you would like to use.  When 
locking is turned on using the above command, any time the user attempts to exit the activity 
(i.e. go back to the previous activity or activities home screen) using any provided mechanism 
(i.e. the "back" button in the navigation bar, or any [back] link button that you provide), they 
will be prompted to enter the configured password.  If the correct password is supplied, the 
activity will exit normally.  If an incorrect password is supplied, the user will be left on the 
activity.  The password you provide is case sensitive.  Note that the user can use links on the 
activity to navigate forward to other activities, so you can provide a set of activities that the 
user can access.  It is up to you to determine what other activities are available via supplied link 
buttons.  The user can then navigate back from those linked activities to the original locked 
activity, and when attempting to exit the locked activity, will encounter the password 
prompt.  Once the activity has been successfully exited, the activity is gone, so the next time 
that activity is loaded, the lock must be re-enabled, likely using an auto-exec on load button. 
To lock an activity without a password, use the following device command using a Command 
button: 
 
{screen lock:on} 
 
When locking is turned on using the above command, all activity exit functionality will be 
disabled.  Any attempt to exit the activity using any supplied mechanism will be ignored.  In this 
case, the activity must be unlocked programmatically before the user is allowed to navigate 
away from the activity.  This allows you to create your own mechanism for prompting the user 
for some criteria to unlock the screen.  This can include presenting your own custom keypad to 
enter an unlock code, presenting the user with questions to answer, requiring some preset 
sequence of button presses, etc.  Use your imagination.  When your unlock requirement has 
been met, you can then unlock the activity programmatically.  
To unlock a locked activity, use the following special device command using a Command 
button: 
 



Page 172 of 199 
Back to top 

{screen lock:off} 
 
This will disable activity locking for the currently active activity, once again enabling all normal 
activity exit mechanisms.  After the activity is unlocked, you may either programmatically 
execute a [back] link command, or wait for the user to press a button to exit.   
Note since the unlock command requires a Command button, to execute this via script, simply 
use: 
 
return '[#]unlockButton';  
 
(where "unlockButton" is the name of the Command button using the above unlock command). 
Two sample activities (one for iPhone and one for iPad) are available on the download page, 
which demonstrate using activity locking to display a "lock screen", requiring the user to enter a 
numeric PIN to unlock and navigate back to the previous activity.  In this example, the activity is 
locked without a password, as described above, and the unlock PIN is defined within the script 
included with the activity buttons.  An external script file is also included, which contains some 
common script used by several buttons included in the layout.  See the "OnLoad" button's 
script to find/change the configured PIN.  This example also demonstrates a few other 
TouchControl features, such as pressed button images, group buttons, button alpha, 
animations, vibrations, Unicode characters on buttons, etc.   
 

http://www.touchapptech.com/#!download/c12ar


Page 173 of 199 
Back to top 

Interactive Web Views 
 

With TouchControl Server 7.1 or later, you can configure a Web View button as "Interactive" 
(when creating the button or editing the button's definition), which allows the links, buttons, 
and/or script within the web page loaded in the web view to interact directly with the 
TouchControl activity that is hosting the web view.  This allows you to design at least a portion 
of your activity with HTML/CSS, yet still retain use of TouchControl features not supported in 
HTML, such as custom TouchControl scripting, global and state variables (shared with other 
TouchControl activities), executing macros, link buttons, etc., along with executing all other 
primary TouchControl button types.   
 
The easiest way to use this feature is to create TouchControl buttons that perform the tasks 
you wish to perform, drag them onto your layout and configure then with hot-spots (no 
images), disable them and size them small-ish and drag them out of the way.  Then create a 
Web View button that will load the desired HTML page, which includes HTML links and buttons 
that directly execute the hidden "native" buttons on your layout.  This could be especially 
useful if you have data collected on a server that you would like to display in TouchControl, 
using XSLT and/or CSS styling to generate a web page from the data, for example, and execute 
"native" TouchControl commands from the links and buttons on that web page.  
  

What you need 
1. A web page with some links, buttons, and/or script 
2. A web server to server up the web page (optional) 
3. TouchControl & TouchControl Server 

The web page 
The page containing the links/buttons/script can be as simple or complex as you like.  The only 
requirement is that each element that triggers a TC button needs to execute one of two 
different "built-in" JavaScript functions which handle the communication with the "native" 
TouchControl activity.  The first function is used to execute a native TC button found in the 
activity.  This function has the following signature: 
 
_tcExecButton(buttonName); 
 
Here is an example of an HTML button and the associated script to execute a button: 
<button onclick="_tcExecButton('MyButton');">My Button</button> 
The built-in _tcExecButton() function "connects" the web page to the native TouchControl 
activity and its associated buttons.  In fact, executing this function from a web page ultimately 
results in the same action as executing one TC button from another using the script return 
'[#]MyButton';.  Any HTML element that can execute JavaScript (or a block of script itself, of 



Page 174 of 199 
Back to top 

course) can execute the _tcExecButton() function. 
 
One additional built-in function is included, which will allow you to update a native button's 
text, image, and/or icon.  This function has the following signature: 
 
_tcUpdateButton(buttonName, buttonText, buttonImage, buttonIcon); 
 
Here is an example of an HTML link and the associated script to update a button: 
 
<a 
href="javascript:_tcUpdateButton('MyButton','newText','myButtonPack/myImage.png','butt
onicons/iconPack/iconImage.png');">My Button</a> 
 
If you wish to only update the text and/or the image and/or the icon, but not all three, simply 
pass null for the attribute(s) you do not wish to update. 
 
One last built-in function is necessary if you wish to interact with the native activity 
automatically when the web page first loads.  The signature for this function is: 
 
function _tcOnLoad() {} 
 
To use this feature, create your own JavaScript function with this name within your web page 
and execute the desired commands from within this function.  For example:  
 
function _tcOnLoad() { 

_tcExecButton('myOnLoadButton'); 
} 
 
This function will get executed automatically by TouchControl once the hosting activity has 
completely loaded.  The reason this is required is because the web page may load before an 
auto-exec on load button completes in the native activity, and attempting to execute a native 
button from a web page prior to an auto-exec button completing can result in unexpected 
behavior.  So, make sure that any calls to the above built-in functions are either included within 
the _tcOnLoad() function, or not attempted until after _tcOnLoad() has completed (i.e. 
triggered from links, buttons, etc.). 
 

The web server 
If you wish to host the web page on an external Web server, you may load the page in a Web 
View button by entering the page's URL on your web server in the Web View button 
configuration, as always. 
 



Page 175 of 199 
Back to top 

However, this feature also includes the ability to send stand-alone HTML pages to your device 
(during config refresh) to store and load locally into Web Views, removing the need to host the 
pages on a remote web server, if desired.  To do this, simply copy your stand-alone HTML page 
into the "HTML" folder located under your TouchControl Server data directory (where your TC 
config files are located - the path can be found on the Settings page in TouchControl 
Server).  Any files found in this folder will be automatically sent to your iOS device the next time 
you tap the refresh button in TouchControl.   
 
Then in the Web View button config, rather than entering an external URL to a web page, enter 
the following URL: 
 
http://localhost/html/myWebPage.htm  
 
Using the "localhost" hostname, along with the "/html/" path, will trigger TouchControl to look 
in the app's internal file system to locate the web page to load into the Web View.  When using 
this feature, you need to make sure that any external resources referenced in your web page 
(images, script files, etc.) are absolute references vs. relative ones (unless, of course, you are 
referencing other images from your device). 
 

TouchControl & TouchControl Server 
Of course, you need to create an activity with a Web View button that will display the web 
page, as described above.  Also on that activity, you'll need to add all of the buttons that will be 
triggered by the built-in script function.  Just add the buttons as hot-spots (no image), disable 
them, and size them small-ish and drag them out of the way.   
 
A complete, working sample activity is available for download that includes all of the above 
features.  This sample activity and associated web pages also demonstrate controlling 
TouchControl from an external source using HTTP requests, discussed here.  Note that the 
sample activity is formatted for full-screen on the iPhone. 
 

http://localhost/html/myWebPage.htm
http://www.touchapptech.com/#!download/c12ar


Page 176 of 199 
Back to top 

USB-UIRT Broadcast (Windows server only) 
 

If you are a user of the USB-UIRT device, you can configure TouchControl Server (7.1 or later) to 
listen for signals received by the USB-UIRT, and re-broadcast the raw IR codes onto your 
network, where iOS devices running TouchControl can listen for and process those codes to 
perform client-side commands (update the activity interface, execute buttons, run script, 
etc.).  To enable this feature, select Tools - Settings from the TC Server menu, then enable 
(check) the "USB-UIRT Broadcast" option at the bottom of the settings panel, then save 
settings.  Any IR codes received by the USB-UIRT will be re-broadcast onto your network using 
the UDP protocol on port 8851.  To receive these codes in TouchControl, create a Feedback 
Listener-type button and an associated Feedback Listener-type interface in Interface Manager 
in TouchControl Server settings.  In the interface, leave the "Multicast Group" blank and set the 
port to 8851.  Then in the Feedback Listener button, set this interface as the "Host", and add 
any script needed to process the various IR codes you expect to receive, drop it on your layout, 
and refresh to your device. 
 
If you've been away from your network, or your iOS device has been asleep, or TouchControl 
has been in the background on your device, and you may have missed one or more automatic 
IR code broadcasts, you can trigger TouchControl Server to re-broadcast all unique IR codes 
that it has received since the last time the server was restarted, in the order they were last 
received by the USB-UIRT.  To trigger the re-broadcast, create a Command button, and in the 
Command field for that button enter {rebroadcast ir}.  When this button is executed from your 
device, the server will re-broadcast all IR codes in its current memory queue, and your 
Feedback Listener button (referenced above) will receive and process these broadcasts just as if 
they were being initially received by the USB-UIRT device.   
 

Note that this only re-broadcasts unique IR codes.  This means that if, for example, the 
USB-UIRT received codes: A, E, B, C, A, C, C, D, B, in that order, when re-broadcast, the 
server will send the codes: E, A, C, D, B, as those are the most recent instances of those 
codes, in the order they were last received. 
 

When TouchControl Server is re-started, the IR code queue will start empty and will once again 
begin queuing IR codes for re-broadcast.  Simply re-broadcasting the IR codes will not clear the 
queue, as you may have additional iOS devices that need to "catch up" with the broadcast IR 
codes at a later time.  If you wish to clear the IR code queue without restarting the server, 
create a Command type button with the command {rebroadcast clear}.  Sending this command 
will immediately empty the queue.   
 
Note that the automatic broadcast feature is disabled while the USB-UIRT is in learn mode in 
TouchControl Server (learning a command from a remote control for an IR type button). 
 



Page 177 of 199 
Back to top 

Server Configuration Management 
 

If you are an installer, supporting and configuring TouchControl for multiple clients, or if you 
maintain multiple TouchControl configurations for your own use, such as for multiple 
TouchControl Servers in your household, or like to maintain "development" and "production" 
configs, you can easily switch between multiple configurations using the TouchControl Server 
"Data Directory" field on the server Settings panel.  
 
The "Data Directory" field in server Settings designates the directory on your server where the 
active configuration is stored.  Using the "Browse" button next to this field, you can easily 
switch to other directories containing complete configurations, or you may manually enter any 
directory you wish.  Once you select or enter a new directory name, clicking the "Save" button 
on the Settings panel will automatically load the configuration found in that directory.  If there 
is no configuration found, you will be asked if you'd like to copy the currently active config into 
that directory.  This is an easy way to copy the current directory to start a new config for a new 
purpose.  If you have a full config export .zip file, you may place it in an empty directory, 
then select/enter that directory name in the "Data Directory" field, and then when you click 
"Save", you will first be asked to copy the current config to that directly, and answering "No" 
will then prompt you to un-zip the full export into that directory, creating a new active 
configuration from that export .zip file.  This is an easy way to share 
configurations between servers, or between users. 
 
The "Data Directory" field is also a drop down list, which will automatically collect any 
directories that you have used in the past.  This will allow you to easily switch back and forth 
between configurations that you have stored in separate directories on your server.  If you 
manually delete a directory from your server's hard drive, it will automatically be removed from 
this list the next time you enter Settings.  Or, if you'd just like to remove one of the entries from 
the list, but not remove the directory from your server, you may select it, then click the "X" 
button next to the drop down to remove it from the list. 
 
(Windows only) You can also easily create a new config directory by typing it into the "Data 
Directory" field, then click the "+" button next to the field, and you will be asked if you'd like to 
copy the currently active config into that new directory, creating the directory if it doesn't 
exist.  
Also, clicking the "Default" button next to the "Data Directory" field will simply populate the 
field with the default data directory name used during TouchControl Server install. 
 



Page 178 of 199 
Back to top 

Server Configuration Recovery 
 

The TouchControl iOS app includes a feature which allows you to recover your full configuration 
in the event that you lose the configuration on your server, for whatever reason.  With this 
feature, you can easily email your full TouchControl configuration from your device to yourself 
(or anyone else).  This feature is found at the bottom of the "Tools" section of the Settings 
screen in TouchControl on your device. 
 



Page 179 of 199 
Back to top 

Web Remotes 
 

Use your remote screens from a web browser on non-iOS devices (EXPERIMENTAL) 
Consider this feature a "work in progress", but you can now render your remotes in any 
modern web browser that supports HTML 5. Only basic functionality is provided with this 
release - primary button types, macros, links, labels, repeating buttons, press & release 
buttons, timer buttons. Features not (yet) supported - sliders, spinners, gesture pads, web 
views, feedback clients & listeners, scripting, ...and anything else not mentioned here. Some of 
these features likely will never be implemented in a browser, but more features will be 
forthcoming. 
 
To launch the web remotes, navigate a browser to:  
 
http://192.168.xx.xx:pppp/touchcontrol/webremote 
 
(where "192.168.xx.xx" is your TouchControl server's IP address, and "pppp" is the "Server 
Port" shown in TouchControl Server settings). 
 
A couple of notes on using this feature.  The WebRemote interface uses the "Location 
Overview" layout for the home activities screen (as in the iOS app - locations are initially listed, 
and selecting a location expands to display its contained activities).  You can use the browser's 
back and forward buttons to move through the "stack" of activities as you navigate from screen 
to screen using your link buttons.  If you wish to return directly to the main activities screen, 
you may long-press (or click & hold if using a mouse) on a blank spot on your activity 
background image, and the browser will navigate back to the main layout screen, removing any 
activities from the "stack". 
 
Here's a screen shot of one user's WebRemote with Web Views displaying output from his 
security cameras. 

http://192.168.xx.xx:pppp/touchcontrol/webremote


Page 180 of 199 
Back to top 

  



Page 181 of 199 
Back to top 

TouchControl Server JSON HTTP API  (Windows server only) 
 

TouchControl Server supports incoming HTTP requests which return JSON-formatted responses, 
allowing you to retrieve locations, activities, devices, and/or buttons, as well as execute buttons 
remotely via HTTP requests to the server. 
 
All JSON API requests start with the following host:port/path: 
 
http://serveripaddress:serverport/touchcontrol/json/ 
 
...where serveripaddress is the IP address of your server, and serverport is the main server port 
configured on the Settings page of TouchControl Server. 
 
The following unique requests are supported: 

• getlocations 

• getactivities 

• getactivities?location=location 

• getactivities?visible=trueORfalse 

• getdevices 

• getdevices?location=location&activity=activity 

• getbutton?device=device&button=button 

• getbuttons 

• getbuttons?device=device 

• getbuttons?location=location&activity=activity 

• executebutton?device=device&button=button 

• executebutton?device=device&button=button&feedback=trueORfalse 

• executebutton?device=device&button=button&var=value&var=value&... 
 

In all cases above, location, activity, device, and button must exactly match the specified 
element within your configuration, including upper/lower case, etc. 
   
The getactivities?visible=trueORfalse parameter must match the string "true" to retrieve all 
visible activities, the string "false" to retrieve all invisible activities, or no value (or omit the 
parameter) to retrieve all activities by default. The "visible" parameter may be used with or 
without the "location" parameter. 

http://serveripaddress:serverport/touchcontrol/json/


Page 182 of 199 
Back to top 

 
The executebutton?feedback=trueORfalse parameter must match the string "true" to return 
feedback from the request, or the string "false" (or omit the parameter) to not return feedback. 
The var=value pairs available with the executebutton request define dynamic substitution 
variables that are embedded in the button commands (e.g. %varname%), which normally 
match global variables defined within TouchControl using _global.varname variables in 
JavaScript.  This includes the dynamic IP address and dynamic Global Caché module and 
connector features as well.  The only restriction is that the var= string may not be one of the 
strings "device=", "button=", or "feedback=".  Dynamic substitution variables may be used with 
or without the "feedback" parameter.   
 
 The executebutton request may be used to execute buttons of the following types only: 

• IR  (ir) 

• Command  (cmd) 

• AutoHotKey  (ahk) 

• HTTP Request  (http) 

• EventTrigger  (et) 

• Global Caché  (gc) 

• iRTrans  (trans) 

• IRCommand2  (irc2) 

• URL  (url) 

• Macro  (mac) 
 
Attempting to execute a button type not in the above list will be ignored by TouchControl 
server. Therefore, the getbuttons request will only return buttons of the above types as well. 
 

Examples of JSON API requests 
http://192.168.1.100:8822/touchcontrol/json/getactivities?location=Home&visible=true 
http://192.168.1.100:8822/touchcontrol/json/getbuttons?location=Theater&activity=Main 
http://192.168.1.100:8822/touchcontrol/json/executebutton?device=DVR&button=On 
http://192.168.1.100:8822/touchcontrol/json/executebutton?    
 device=iTach&button=Back&module=1&connector=3 
 

Response Format 
The data returned from these requests will be in JSON format.  JSON formatted data can be 
turned into JavaScript objects using either the eval() function, or a built in JSON parser, if 

http://www.w3schools.com/json/
http://www.w3schools.com/json/json_eval.asp


Page 183 of 199 
Back to top 

available.   
 
The following are the JSON response formats for the above requests: 
 

getlocations: 

[ 
 { 
   "location": "locationName1", 
   "activityUrl": "url_to_retrieve_activities_for_locationName1" 
 }, 
 { 
   "location": "locationName2", 
   "activityUrl": "url_to_retrieve_activities_for_locationName2" 
 }, 
 { ... } 
] 
 

getactivities: 

[ 
 { 
   "activity": "activityName1", 
   "deviceUrl": "url_to_retrieve_devices_for_activityName1" 
   "buttonUrl": "url_to_retrieve_buttons_for_activityName1" 
 }, 
 { 
   "activity": "activityName2", 
   "deviceUrl": "url_to_retrieve_devices_for_activityName2" 
   "buttonUrl": "url_to_retrieve_buttons_for_activityName2" 
 }, 
 { ... } 
] 
 

getdevices: 

[ 
 { 
   "device": "deviceName1", 
   "buttonUrl": "url_to_retrieve_buttons_for_deviceName1" 
 }, 
 { 
   "device": "deviceName2", 
   "buttonUrl": "url_to_retrieve_buttons_for_deviceName2" 



Page 184 of 199 
Back to top 

 }, 
 { ... } 
] 
 

getbutton: 

{ 
  "name": "buttonName", 
  "type": "buttonType", 
  "device": "buttonDevice", 
  "execUrl": "url_to_execute_buttonName" 
} 
 

getbuttons: 

[ 
 { 
   "name": "buttonName1", 
   "type": "buttonType1", 
   "device": "buttonDevice1", 
   "execUrl": "url_to_execute_buttonName1" 
 }, 
 { 
   "name": "buttonName2", 
   "type": "buttonType2", 
   "device": "buttonDevice2", 
   "execUrl": "url_to_execute_buttonName2" 
 }, 
 { ... } 
] 
 

executebutton (feedback only): 

{ 
  "feedback": "button_feedback_result" 
} 
In all cases above, the URLs returned in the JSON response can be used as-is in a subsequent 
HTTP request, allowing you to "drill down" through your configuration to find the desired 
element(s), if desired. 
 

Sample Code 
serverjsonapi.zip contains the following files which provide examples of using the Server HTTP 
JSON API. 
 

http://www.touchapptech.net/touchcontrol/json/serverjsonapi.zip
http://www.touchapptech.net/touchcontrol/json/serverjsonapi.zip


Page 185 of 199 
Back to top 

serverjsonapi.htm is a web page that demonstrates navigating through your config to provide a 
list of links which execute the buttons found.  It also allows entering a device and button name 
to execute a given button.  This file must be edited to update the network settings with your 
server's IP address and server port.  Extract this file to your Windows desktop, update the 
network settings in the file, and double click on it to load it in your default browser. 
http://www.touch-ir.com/json/serverjsonapi.js 
serverjsonapi.js is a Windows JScript file that demonstrates executing a button given a device 
and button name.  This file must be edited to update the network settings with your server's IP 
address and server port.  Extract this file to your Windows desktop, update the network 
settings in the file, and double click on it to execute it. 
 

http://www.touch-ir.com/json/serverjsonapi.js


Page 186 of 199 
Back to top 

Zero Config 
 

ZeroConfig networking is now available which allows TouchControl on your device to 
automatically detect and configure the network settings (IP address and port number) of your 
TouchControl Server(s).  During initial setup of the client app, if any TouchControl Servers are 
found on your network, TouchControl will update the configuration and automatically 
download the configuration from your server with no intervention required from the user.  If 
multiple TouchControl Servers are found, the client configuration will be updated with the 
network settings of each server, and you may select which server to use for the initial 
configuration download. 
 
To enable ZeroConfig networking, you must have Apple's "Bonjour for Windows" installed and 
active on your TouchControl Server.  If it is not found, TouchControl Server will alert you and 
allow you to either quit TouchControl Server and install Bonjour, or disable ZeroConfig 
networking via server settings.  Bonjour for Windows may be downloaded from the Apple web 
site here: https://support.apple.com/kb/DL999 
 
TouchControl Server will now prompt you to supply a name for the server during the initial run 
of the server program.  This should be a "friendly" name that you would like to use to 
distinguish the server, and will be used on the client to configure the server in the app 
settings.  Once the client app is initially configured, any changes to your TouchControl Server 
topology (server name change, new server added, etc.) will be automatically detected by the 
client app and the settings will be updated accordingly (and you will be notified via an alert in 
the app on your device).  Updates to the server settings are detected each time TouchControl 
is started, and each time you refresh your configuration by pressing the "Refresh" button in the 
upper-right corner of the TouchControl main activities screen. 
 
Note: If your TouchControl Server has multiple network adapters (i.e. Ethernet and wireless), 
ZeroConfig will find both networks and configure them as multiple servers (with the same 
name) in the client configuration.  This is not an error, and will allow you to contact your server 
when it is connected to your network in either wired or wireless modes. 
 
If you prefer not to use ZeroConfig networking, once you disable the feature in TouchControl 
Server, you will not be prompted again (until you re-enable the feature), and all networking 
updates must be made manually in TouchControl on your device. 
 

https://support.apple.com/kb/DL999


Page 187 of 199 
Back to top 

Screen Grabber 
 

IMPORTANT: if you have trouble getting the grabber output to properly display, there is 
workaround for this problem in the "Grabber not working?" topic on the Troubleshooting page 
for more information. 
 

NOTE:  In older iOS releases there have been issues with viewing Motion JPEG (MJPEG) 
streams in Mobile Safari (including the Web View feature in TouchControl) which can 
prevent viewing TouchControl Grabber output on a device.  If you have problems 
viewing grabber output, TouchControl Server (for Windows) has an option under the 
“Help – Troubleshooting” menu titled “Use Frame Grabber”.  When enabled, this will 
force the Grabber to serve up individual images (frames), rather than a MJPEG 
stream.  To use the frame grabber, you’ll also need to alter the configuration of your 
grabber Web View button to turn ON the “Autorefresh” option, and set the refresh rate 
to 0 (zero) seconds.  This will force the Web View to continually request new frames 
from the server.  Unfortunately, this will not provide the same frame rate experienced 
with the MJPEG grabber (due to latency introduced with the individual HTTP requests), 
but at least it will display the grabber output, where the previous grabber settings may 
not.  

 
The Screen Grabber is a unique feature of TouchControl Server that allows you to "grab" or 
"capture" a region of your Windows desktop and view it within a Web View in TouchControl on 
your iOS device.  The Screen Grabber consists of a "grab frame", which is a transparent window 
that you can drag, resize, and place anywhere on your desktop, and whatever is displayed 
within that region - whether it's any other window, or the desktop itself), is "grabbed" and sent 
to your iOS device and displayed as an image within a Web View using Motion JPEG over 
HTTP.  This allows you to watch, or monitor, activity on your computer's desktop from within a 
TouchControl remote activity.  Uses of this can include capturing output from games or 
simulators and displaying in real time on your iPhone or iPad, monitoring program 
output/progress remotely, or viewing any activity that occurs on your computer. 
Using the screen grabber is incredibly easy.  When in TouchControl Server simply select Tools - 
Screen Grabber from the menu, and the grab frame will open and begin "grabbing" the region 
of your desktop located within its bounds.  Simply move the window to the desired location by 
dragging the grab frame title bar, and resize the frame by dragging the frame border - just like 
any other window on your desktop.  When moving or resizing the frame, a panel will appear in 
the upper right corner of the grab frame which shows the current grab frame size and location. 
For more precise control, simply double-click on the frame's title bar to display an input panel 
within the grab frame which allows you to enter precise size and location parameters in pixel 
coordinates.   
 
This input panel will also allow you to select the quality of the images that will be served to your 

http://www.touchapptech.com/#!troubleshooting/yaz3p
http://en.wikipedia.org/wiki/Motion_JPEG
http://en.wikipedia.org/wiki/Motion_JPEG


Page 188 of 199 
Back to top 

device.  "Normal" quality provides the best blend of quality and performance.  "High" quality 
will improve the quality/resolution of the images, while degrading performance to some 
degree.   
 
You will also have the option to capture the mouse pointer within the grab window.  When 
paired with a gesture pad mousepad (placing a transparent mousepad on top of the grabber 
Web View in your layout), this option will allow you to control your PC (with the mousepad) 
while viewing your desktop from your iOS device (via the grabber).  While this option is enabled 
and the grabber is running, the mouse movements generated from the TouchControl 
mousepad will not allow the mouse pointer to exit the grabber frame on your computer's 
desktop.  This ensures that you can always see the mouse pointer in the grabber output while 
controlling the cursor.  (This does not affect mouse movement generated from the actual 
mouse connected to your PC, however.)   
 
On this same input panel there is also an option to "Set & Hide" the grab frame.  This option will 
set the size and location, and then hide the grab frame from view.  To re-display the grab 
frame, select Tools - Show Screen Grabber from the TouchControl Server menu. 
When done with the grabber, simply click the 'X" in title bar, just like any other window, or the 
grabber will also automatically shut down when the TouchControl Server application is shut 
down.  Each time the grabber is started, it will automatically return to the same size and 
location from the last time the grabber was used. 
 

Viewing Grabber Output 
To view the output from the grabber, simply drop a Web View button on any activity within the 
TouchControl Server designer, and when configuring the Web View (using "Set Data"), simply 
enter the following: 
 
%touchcontrolserver/grabber% 
 
When the Web View is rendered within TouchControl on your iOS device, the above string will 
be dynamically converted to the required URL (including TouchControl Server IP address and 
port number) to retrieve the screen grabber output. 
 
You can also enter raw HTML into a Web View to have that HTML rendered within 
TouchControl.  This allows you to use HTML like the following to gain more control of the 
grabber output: 
 
<body style="margin:0px"><img src="%touchcontrolserver/grabber%" 
mce_src="%touchcontrolserver/grabber%" style="width:100%;height:100%"/></body> 
 
This is an extremely simple HTML example, but you can also include JavaScript and any other 



Page 189 of 199 
Back to top 

style attributes/tags to interact with and manipulate the grab images in virtually any way 
desired. 
The grab frame does not need to be on top of any other windows to display the contents of 
those windows.  It simply provides an easy way to specify the region of the screen that will be 
captured by the screen grabber.  If the grab frame is hidden by other windows, you can easily 
find it by selecting Tools - Screen Grabber again from the TouchControl Server menu, and the 
grab frame will pop to the top and flash on the screen.  If the grab frame is somehow moved off 
screen to an inaccessible location, you can easily return it to its default location by 
selecting Help - Troubleshooting - Reset Grabber Coordinates.  This will stop the grabber, and 
the next time it is started, it will be located in the upper-left of your primary display. 
 

Grabber Protection (Windows server only) 
You may "protect" your screen grabber output - that is, restrict it's viewing to only desired 
devices - by specifying the device IDs which are allowed to view Screen Grabber output. To 
specify the approved device IDs, double-click the grabber frame title bar to display the grabber 
config panel, select the "Protect" option, then click the "Enter Device IDs" button, and add any 
desired device IDs.  Use the "+" button to add a new ID, use the "-" button to remove a selected 
ID, or double-click an existing device ID in the list to modify it.  To find the ID for your device, 
access Settings within TouchControl, then tap the "i" icon in the upper right, displaying the 
app's "About" screen, and then tap "Device ID" in the lower left corner of the screen.  Devices 
running operating systems prior to iOS 7 will display the device's MAC address, which should be 
entered as displayed, and devices running iOS 7 or later will display a unique "Vender ID", which 
is a lengthy, multi-part hex string separated by dashes.  This entire string must be used in the 
grabber protect feature, and can be entered either with or without the dashes. 
 
Within the web view displaying the grabber output, simply use the %touchcontrol/grabber% 
substitution tag to generate the proper request including the device ID.  See above for more 
information.  
 
You may also use the "Help - Troubleshooting - Local Command Echo" feature of TouchControl 
Server to view incoming requests for grabber output.  Any request made by TouchControl on an 
iOS device will display the device's ID in the local command echo window (denoted with a 
"[grab:id]" prefix).  You may copy & paste the ID from there as an easy way to include your 
devices in the protection list. 
 

Troubleshooting the Grabber 
Some Windows applications use full-screen mode to display content (including games, 
simulators, etc.).  In some cases, it will be necessary to disable Windows Aero in Windows 7 or 
Vista in order to grab the output from those applications when in full-screen mode.  If Windows 
Aero is enabled, and you find that the grabber only captures the underlying windows desktop 
when an application is in full-screen mode, try using the Help - Troubleshooting - Disable Aero 



Page 190 of 199 
Back to top 

While Grabbing option within TouchControl Server to temporarily disable Aero in order to 
capture the desired output.  If Aero was enabled when using this option, it will be automatically 
re-enabled when you either stop the grabber, or shut down the TouchControl Server 
application.  Please note that some Windows applications use certain DirectX hardware 
acceleration features that may keep you from capturing their output even when Aero is 
disabled.  In those cases, you may need to also disable DirectX hardware acceleration in order 
to grab the output from those applications.  Please consult your video card documentation or 
Microsoft DirectX documentation for more information on DirectX hardware acceleration 
enabling/disabling. 
 
Please see the Solutions page for an overview of some uses of the TouchControl Screen 
Grabber! 
 

http://www.touchapptech.com/#!solutions/kwbl1


Page 191 of 199 
Back to top 

EventGhost (Windows server only) 
 

To control EventGhost, you must also install the TouchControl EventGhost plugin that is 
included with the TouchControl Server installation. The string you enter in the button 
configuration will then become the event trigger within the EventGhost system. The event 
prefix is configured within in the TouchControl EG plugin in the EventGhost interface, and 
defaults to "TouchControl", so an EventTrigger button configured with the string "MuteOn", for 
example, would show up in EventGhost as "TouchControl.MuteOn". Please consult the 
EventGhost documentation for instructions on setting up macros and other events that can 
respond to the TouchControl triggers. 
 

EventGhost Feedback 
The EventGhost plugin also includes an action that allows you to send feedback from your 
EventGhost macros directly back to TouchControl on your iPhone/iPad/iPod. When you create 
an EventTrigger button in TouchControl Server, you are given the option to check the 
"Feedback" box, which tells the device app that after it sends the command to EventGhost, it 
should wait to receive some text back from EventGhost before continuing. That text can then 
be used to replace the caption on any of your activity buttons or labels, and/or replace the 
images associated with any button or label on your layout. To configure and use EventGhost 
feedback: 

• Create an EventTrigger button in TouchControl Server and select the Feedback option 

• Install the EventGhost plugin using the files located in the "EventGhost Plugin" directory 
created in the install location (under Program Files) during the TouchControl Server 
installation. 

• Restart EventGhost 

• Create a macro in EventGhost that triggers on any TouchControl event 

• Add the TouchControl "Feedback" action to your macro 

• When prompted to configure the action, enter the name of the button or label that 
should receive the feedback string into the "Button/Label Name" field (an example is pre-
populated into this field - change it to your button/label name), and enter the text that 
you'd like to send back to TouchControl into the "String Value" field. 
Note that the string value can either be static text, or it can be a dynamically generated 
string. The default example that is populated in the "String Value" field is an example of a 
dynamically generated string: {eg.Utils.time.strftime('%Y-%m-%d @ %H:%M:%S')} This 
generates a string with the current date and time. Please consult the EventGhost 
documentation, documentation from any other plugins that you may use to generate 
feedback text, and/or a Python programming references for information on how to 
generate dynamic string values. 



Page 192 of 199 
Back to top 

 
For more control over the data returned from EventGhost, use the "Custom Value" field 
on the TouchControl EventGhost plugin feedback action settings. Any value entered into 
the "Custom Value" field will override any existing values in the "Button/Label Name" and 
"String Value" fields. 
 

• buttonName^buttonText 
 
Where "buttonName" is the name of the label or button that will receive the feedback 
value, and "buttonText" is the string value that will be placed on the button or label. 
Either of those values may be static text, or may be dynamically generated from 
EventGhost script. Please consult the EventGhost documentation for information on 
generating dynamic string values. 

• You may also update multiple buttons/labels by including multiple update strings as 
follows: 
 
buttonName1^buttonText1|buttonName2^buttonText2|etc… 

• If you wish to update the image associated with any button or label, enter a string in the 
Custom Value field in the following format:  
 
buttonName[@]buttonpack/buttonfile.png 
 
Where 'buttonpack/buttonfile.png' is the name of an image from a button pack that has 
been included with your layout. 
 
To update multiple button/label images, use the same format as above: 
 
buttonName1[@]buttonpack/buttonfile1.png|buttonName2[@]buttonpack/buttonfile2.p
ng|etc… 

 
Please note that when you designate a button as an EventTrigger feedback button, when the 
button is pressed TouchControl will wait up to 10 seconds to receive the feedback. If no 
feedback is received within that time, TouchControl will not populate your feedback label or 
button caption, and will simply continue normally. 
 
If you wish to process the feedback from this button using custom script, select the "Feedback 
Script" option and enter/paste your JavaScript in the provided text box. See the Scripting topic 
for more information regarding feedback and feedback scripting. 
 



Page 193 of 199 
Back to top 

If, when attempting to send feedback, the EventGhost plugin displays the message "Bad file 
descriptor" in the EventGhost log window, this means that TouchControl is not connected to 
EventGhost to receive the feedback.  Please check to make sure your TouchControl button has 
been designated to receive feedback in the button definition, or if using a Feedback Client 
button, make sure the button exists on your activity layout, and the activity is open on your iOS 
device. 
 
Note: If using EventGhost, your EventGhost server may be running on any PC/server on your 
network. EventGhost does NOT have to be running on the same system as TouchControl Server. 
 



Page 194 of 199 
Back to top 

Wake-on-LAN 
 

Broadcast a wakeup call to your network devices to bring them to life - right from a button on 
your TouchControl screen!  Wake up any device that will respond to a "magic packet" message. 
This feature is implemented via the "EventTrigger" interface (see #5).   
To send wake-on-LAN (WOL) to any device on your network: 

• Use "Interface Manager" (in TouchControl Server Settings) to add a broadcast IP address 
for your network.  When adding the broadcast device: 

 Select "EventTrigger" as the server type 
 Give the server a unique name, such as "WOL Broadcast" 
 Enter a broadcast IP address for your network: 
 This can either be 255.255.255.255, or can be specific to your network address 

scheme, such as 192.168.1.255 (if your router/gateway address is 
192.168.1.1, for example) 

 This interface can now be used to send wake-on-LAN messages to any device 
on your network (just make sure the final octet of the broadcast IP 
address is “255”). 

• Save the new interface settings. 

• Add an "EventTrigger" button to one of your devices. 

• In the "EventTrigger Command" field, enter the following: 

 WOL[device MAC address] 
 The device MAC address should be all hex characters, with no dashes, colons, or other 

special characters. 
 Example: WOL[001C67617D2D] 

• Please consult your device's documentation or network settings to find its MAC address. 

• The "Command Terminator" is not used for this button. 

• Set the "Host" selection to the broadcast server added previously (above) 

• The "Magic Packet" will be broadcast out to your entire network, but only the device 
whose MAC address matches the hex string entered in the command will respond. 

To wake up multiple devices at the same time, add a button for each and create a macro 
containing all of the buttons. 
 



Page 195 of 199 
Back to top 

Access From the Internet 
 

Within Settings in the iOS app on your device, you can supply an additional, internet-facing IP 
address for your TouchControl Server(s), and TouchControl will automatically detect the 
network state and use the best connection available (i.e. WiFi if it is available, and WWAN if it is 
not). 
 
Within Settings, select your TouchControl Server (under "Network Settings"), then tap the 
"Edit" button on the nav bar, and enter your Internet-facing IP address in the "WAN Server" 
field. If you use a dynamic domain name service (such as DynDNS or Windows Home Server 
DNS service), you may enter your DNS hostname instead of an IP address in this field.  If there is 
an IP address or host name entered in this field, TouchControl will attempt to use it whenever 
the device does not have a WiFi connection available.  On the main settings screen, you can 
also turn on the "Force WAN" option, which will force TouchControl to use the "WAN Server" 
address or host name, even when on a WiFi connection.  This is useful when you want to use a 
public WiFi hotspot such as at a coffee shop or hotel.  Note that in this situation it is not truly 
forcing WAN connectivity, it is simply forcing TouchControl to use the “WAN Server” address to 
connect to the server.  An additional option is also available to "Force LAN", which always uses 
the LAN server and interface host addresses, regardless of the type of network you are 
connected to.  This is useful when you are connected to a cellular network, but are using a VPN 
to access your local network. 
 
Also, see the Interface Manager section to find instructions for setting up WAN-specific ports 
for your interface hosts. 
 
 



Page 196 of 199 
Back to top 

Custom Slider Images 
 

One feature that this enables is the ability to provide custom image for slider buttons.  This 
includes the left and right slider bars, as well as the "thumb" image (the image that you slide 
back and forth with your finger). 
 
These custom images are specified for a slider button using the "button properties" feature 
while designing a layout.  After a button has been dropped onto a layout, access custom 
properties by right-clicking on the slider button within the layout and selecting "Properties..." 
from the popup menu. All slider buttons will have three built-in properties named 
"sliderBarLeft", "sliderBarRight", and "sliderThumb". Select any of these properties from the 
"Name" list, and enter the location of the slider image in the following format: 
myleftbarimage.png 
 
Once you've entered the desired image file name in the property value field, click the + button 
to add the property to the button's properties list, then click Save to exit the properties dialog 
after adding all three slider image properties to the list. 
 
Custom slider images are located in the "sliderimages.zip" button pack within the images folder 
under your TouchControl data directory on your server.  A few sample slider images are 
included with the server installation.  The filenames of these sample images are: 
 
sampleleftbar.png 
samplerightbar.png 
samplethumb.png 
sampleleftbar2.png 
samplerightbar2.png 
samplethumb2.png 
 
Give these images a try to see what is possible. 
 

To add your own images, simply include them in this .zip file, just as you would any other 
button image that you supply.  The slider images must be found in this file, and be located 
within the "sliderimages" folder within the sliderimages.zip file to be rendered within 
TouchControl activities on your device. 
 
Also note that the slider images will not display on the layout designer panel on the server, but 
will display when the slider is rendered within the activity in TouchControl on your device. 
 



Page 197 of 199 
Back to top 

Global Caché "Smooth Continuous IR Commands" 
 

 "Smooth continuous IR commands" is a term that Global Caché (GC) uses to describe a method 
of sending IR commands via their adapters that results in continuous repeating IR signals sent 
to your devices with no interruptions, or "choppy actions".  To fully understand this concept, 
you should first read the documentation provided by Global Caché on their web site at this 
address: http://www.globalcache.com/files/docs/API-iTach.pdf (see page 13 or this 
document).  After you have read that, please return here to continue.  As outlined in the GC 
document, "smooth continuous IR commands" are very useful for things like volume control, so 
that's where this document will focus as well. 
 
To perform smooth continuous IR commands within TouchControl, we need a way to send 
repeating commands to the GC adapter, and then abruptly stop those commands when we 
want the repeating to stop.  Luckily TouchControl includes everything required to perform this 
action: 

• Ability to send repeating commands - the repeating button type, of course 

• Ability to send individual IR commands with an embedded repeat count greater than 1 - 
Global Caché buttons allow this in the GC command settings when learning or editing 
GC IR commands 

• Ability to stop an IR command from repeating at any moment - using Global Caché 
"stopir" command 

• Ability to start repeating when you press a button, and stop repeating when you release 
a button - the TouchControl "Press & Release" macro type 

 
In short, when we press a button (Volume Up, for example), we want TouchControl to begin 
sending volume up IR commands, and when we release the button, we want it to stop.  Simple, 
right?  Well, when we press the button, we don't want to just repeat normal, single IR 
commands.  For truly continuous, un-interrupted IR control, we'd like each repeating command 
that we send to have its own repeat count that is internal to the GC adapter.  So, for each 
repeated command from TouchControl at, say, 1 second intervals, the GC adapter will actually 
repeat the command to your device 10 times (again as an example).  This basically takes the 
network and any associated lag time out of the equation for those 10 repeated signals, since 
they are all generated within the GC adapter and sent straight to your device with no 
communication back to TouchControl needed.  Then as you continue to hold down the button 
in TouchControl, TouchControl will continue to send IR commands which will in turn be 
repeated on their own within the GC adapter. 
 
A nice feature of the GC adapters that really makes this possible (and is discussed in their 
documentation linked above) is that while the adapter is sending a repeating command, if it 

http://www.globalcache.com/files/docs/API-iTach.pdf


Page 198 of 199 
Back to top 

receives another identical repeating command, it will simply start the repeat count over at zero, 
rather than adding the new repeating count to the old, currently repeating 
command.  Therefore, if you set the GC IR repeat count to 10, then you will be guaranteed to 
not get more than 10 repeated commands after you send any individual signal from 
TouchControl. 
 
So now what about terminating the repeating commands.  If we've just sent a command to GC 
that will repeat 10 times on its own, we still want to be able to terminate that repeating 
command when we release the button on the TouchControl screen.  That's where the "stopir" 
command comes into play.  If the GC adapter is currently repeating an individual IR command, 
and it receives a "stopir" command, it will immediately stop repeating and discard any further 
commands in its current repeat cycle. 
 
So now we have the basic elements needed - the ability to continuously repeat IR commands to 
your device without network lag, and the ability to stop those commands on demand.  To put 
those together, we'll use a "Press & Release" TouchControl macro.  The following is a step-by-
step guide to creating a smooth continuous press & release button. 

1. Within TouchControl Server, select any device that you'd like to add the button to and 
click "Add Button". 

2. Create a new Global Caché repeating button (in any device desired) with a repeat 
interval of .25 sec.  We'll name this button "VOL++". 

3. Click "Add" to add this button to your list. 

4. Click "Set Data" for this button and select the "IR" type in the upper left, then either 
click "Learn", "Edit", or "Import" depending on how you will be acquiring your IR 
code.  If you already have an existing GC IR button with an existing code that you are 
using instead, click "Edit" to modify the existing button settings. 

5. Select the iTach or GC-100 device you will be using in the "Device Name" drop-down at 
the bottom. 

6. On the left side of the dialog box, set the "Module" and "Connector" values based on 
the module/connector you will be targeting on the GC adapter. 

7. Set the "Repeat" count for this command to 20. 

8. Set the "Separation" value for this command to 20 milliseconds.  The separation value 
will indicate the length of time to wait between repeats by the GC adapter.  Given all the 
math, this should be sufficient to allow TouchControl to send another command before 
the current repeating command has completed, ensuring there is no break in the 
continuous IR signal to your device. 

9. Save this button. 



Page 199 of 199 
Back to top 

10. Create a new Global Caché non-repeating button.  We'll name this button "StopIR". 

11. Click "Set Data" for this button and select the "IR" type in the upper left, then click the 
"Edit" button to modify the button config. 

12. Select the iTach or GC-100 device you will be using in the "Device Name" drop-down at 
the bottom (the same device used for the "VOL++" button above). 

13. On the left side of the dialog box, set the "Module" and "Connector" values to match 
the module/connector used for the "VOL++" button above. 

14. Set the "Repeat" value to 1. 

15. The "Separation" value doesn't matter in this case since the command will not be 
repeating, so just leave it at its default.  The "Frequency" also is not used since this is not 
a "true" IR hex command. 

16. In the empty text box to the right, simply enter "stopir" (all lower case, without the 
quotes). 

17. Save this button. 

18. Create a new "Macro" button.  We'll name this one "Volume Up". 

19. Click "Set Data" to modify the button's config. 

20. Select the "Press & Release" option at the top. 

21. Locate the "VOL++" button created above and add it as the "Press" action. 

22. Locate the "StopIR" button created above and add it as the "Release" action. 

23. Save this macro. 
 
Add the new "Volume Up" macro button to a layout and refresh to your device. 


	TouchControl Server Setup (Windows)
	TouchControl Server Setup (macOS)
	Devices and Buttons
	Buttons
	Primary Buttons
	Composite Buttons
	Auxiliary Buttons

	IR Buttons (Windows server only)
	IR Transmit Repeat Factor
	Pre-Script & Post-Script

	Command Buttons
	Feedback Script
	Pre-Script & Post-Script
	iOS Device Commands
	Always On mode
	Full Screen mode
	Screen Brightness
	Activity Locking
	Screen Scrolling
	Keyboard Control
	Image Picker

	Server-side Commands (Windows server only)
	Server Sleep
	Screen Grabber Control
	USB-UIRT IR Code Re-broadcast


	AutoHotKey Buttons (Windows server only)
	AutoHotKey Feedback
	Keystroke Helpers
	QuickEdit
	Pre-Script & Post-Script

	EventTrigger Buttons
	HEX Commands:
	Pre-Script & Post-Script
	EventGhost

	Global Caché Buttons
	Add a Global Caché interface in TouchControl Server
	Add Global Caché buttons to your activities
	Pre-Script & Post-Script

	HTTP Request Buttons
	Add HTTP Request buttons
	Pre-Script & Post-Script

	iRTrans Buttons
	Add iRTrans buttons to your activities
	"Edit" mode
	"Learn" mode
	"Import" mode

	Pre-Script & Post-Script

	Macro Buttons
	Blocking vs. non-blocking pauses
	MacroMessage
	Press & Release macros
	Release-only buttons

	Slider Buttons
	"Snap to touch" slider interaction
	Action on release
	TouchTips
	Script

	Spinner Buttons
	Grids

	Gesture Pad Buttons
	Hold To Repeat
	2-Stage Buttons
	Gesture Pad Mousepad (Windows server only)
	Redirect Mouse & Keyboard Control
	Swipe Velocity

	Link to Activity Buttons
	Dynamic Links
	Link Pre-Script
	Background Links
	Popover Links
	Custom transitions

	Labels
	Web Views
	Dynamic Variable Substitution
	Refreshing a Web View
	Alter a Web View's Identity
	Web View Script

	URL buttons
	Feedback Client Buttons
	Feedback Listener Buttons
	Script Buttons
	Group Buttons
	TouchMotion
	Group Edit Mode
	Hide In Designer
	Templates

	Text Fields

	Designing Layouts
	Background Image
	Adding Buttons
	Configuring Buttons
	Saving Layouts

	Interface Manager
	Template Manager
	Server Tools
	Backgrounds and Button Packs
	Background Images
	Button Packs

	Scripting
	Feedback Script
	The Return String
	Button text/image/icon:
	Execute a button
	Additional timer button flags

	Examples
	Full Script Examples
	Feedback Slicing


	Advanced Scripting
	Button pre-script and post-script
	Custom Button Properties
	Built-In Button Properties
	For buttons that display text
	For Slider buttons
	For HTTP Request buttons
	For all button types that render as a button on the screen
	For Gesture Pad buttons
	For Group buttons
	For _deviceMotion buttons
	For _mouseMoveButton buttons
	For _macroMessage buttons
	For all buttons on a watch activity
	For Multi-Peer buttons

	Custom script libraries
	Button Script Variables
	Helper functions
	Other available non-button-specific script variables and helper functions
	Local/Global Variables, and State Variables via iCloud
	Local Variables
	Global Variables
	State Variables and iCloud

	Script Handlers
	Handle iPad rotation with script

	Global Watchers

	Apple Watch
	Activity configuration
	Watch Button configuration
	Watch Haptics
	Apple Watch interface styles for TouchControl

	Miscellaneous Topics
	Sizes
	Background Slideshow
	Activity & Device Sharing
	Network PING
	Connectable
	LocationManager
	Device Battery Monitor
	Speech Synthesis
	Siri Integration
	IFTTT Webhooks Integration
	External Mousepad
	Simple Service Discovery Protocol (SSDP)
	Integrated Global Caché IR Database
	Device Motion Sensing
	Designer Device & Button Search (Windows server only)
	Device Search
	Button Search

	Grid Buttons
	Multi-Peer (Nearby Networking)
	The Multi-Peer Session
	Multi-Peer Button Properties
	Sender-only EventTrigger Properties:
	Sender and Receiver EventTrigger Properties:


	Activity Locking
	Interactive Web Views
	What you need
	The web page
	The web server
	TouchControl & TouchControl Server


	USB-UIRT Broadcast (Windows server only)
	Server Configuration Management
	Server Configuration Recovery
	Web Remotes
	TouchControl Server JSON HTTP API  (Windows server only)
	Examples of JSON API requests
	Response Format
	Sample Code

	Zero Config
	Screen Grabber
	Viewing Grabber Output
	Grabber Protection (Windows server only)
	Troubleshooting the Grabber

	EventGhost (Windows server only)
	EventGhost Feedback

	Wake-on-LAN
	Access From the Internet
	Custom Slider Images
	Global Caché "Smooth Continuous IR Commands"

